Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes

The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2014-09, Vol.566, p.23-31
Hauptverfasser: Castro-Beltran, A., Dominguez, C., Bahena-Uribe, D., Sepulveda-Guzman, S., Cruz-Silva, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue
container_start_page 23
container_title Thin solid films
container_volume 566
creator Castro-Beltran, A.
Dominguez, C.
Bahena-Uribe, D.
Sepulveda-Guzman, S.
Cruz-Silva, R.
description The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy. •Early-stage polymerization polypyrrole particles on indium tin oxide (ITO).•Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO.•Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film.•Non-electroactive additives strongly influence polypyrrole nucleation on ITO.
doi_str_mv 10.1016/j.tsf.2014.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660038253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609014007354</els_id><sourcerecordid>1660038253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e5aaf3696ce6a4eca9e98c74bd0cee0cc8191d0cffb1e2eb00099d9c5ccc91133</originalsourceid><addsrcrecordid>eNp9UE1LJDEQDeKCo7s_wFsugpduK52e7g6eRPxYELzoOWQqlTVDT2dMMuLsr980Ix4XCl5V8d4r6jF2LqAWILqrdZ2TqxsQbQ19XeCILcTQq6rppThmC4AWqg4UnLDTlNYAIJpGLtjuzjnCzIPjU5gqGssQg8HsP4gba_3cJB4mnt-Ik4njnqds_hDf7mMMY9kdJNsw7jcU_V-TfWGX8pP1uw3Pvkyf3n4zLaWf7IczY6JfX3jGXu_vXm4fq6fnh9-3N08VtiBzRUtjnOxUh9SZltAoUgP27coCEgHiIJQovXMrQQ2tyldKWYVLRFRCSHnGLg--2xjed5Sy3viENI5morBLWnQdgBya5UwVByrGkFIkp7fRb0zcawF6jlivdYlYzxFr6HWBorn4sjcJzeiimdCnb2Ez9FIum9n7-sCj8uuHp6gTepqQrI8lEm2D_8-Vf7gIlQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660038253</pqid></control><display><type>article</type><title>Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Castro-Beltran, A. ; Dominguez, C. ; Bahena-Uribe, D. ; Sepulveda-Guzman, S. ; Cruz-Silva, R.</creator><creatorcontrib>Castro-Beltran, A. ; Dominguez, C. ; Bahena-Uribe, D. ; Sepulveda-Guzman, S. ; Cruz-Silva, R.</creatorcontrib><description>The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy. •Early-stage polymerization polypyrrole particles on indium tin oxide (ITO).•Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO.•Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film.•Non-electroactive additives strongly influence polypyrrole nucleation on ITO.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2014.07.014</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Additives ; Atomic force microscopy ; Cationic ; Composition and phase identification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electrodeposition ; Electrodeposition, electroplating ; Exact sciences and technology ; Materials science ; Mechanical and acoustical properties ; Methods of deposition of films and coatings; film growth and epitaxy ; Morphology ; Physical properties of thin films, nonelectronic ; Physics ; Polymerization ; Polypyrrole ; Polypyrroles ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Surfactants ; Theory and models of film growth ; Thin film structure and morphology ; Thin films</subject><ispartof>Thin solid films, 2014-09, Vol.566, p.23-31</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e5aaf3696ce6a4eca9e98c74bd0cee0cc8191d0cffb1e2eb00099d9c5ccc91133</citedby><cites>FETCH-LOGICAL-c403t-e5aaf3696ce6a4eca9e98c74bd0cee0cc8191d0cffb1e2eb00099d9c5ccc91133</cites><orcidid>0000-0002-6120-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2014.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28733523$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro-Beltran, A.</creatorcontrib><creatorcontrib>Dominguez, C.</creatorcontrib><creatorcontrib>Bahena-Uribe, D.</creatorcontrib><creatorcontrib>Sepulveda-Guzman, S.</creatorcontrib><creatorcontrib>Cruz-Silva, R.</creatorcontrib><title>Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes</title><title>Thin solid films</title><description>The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy. •Early-stage polymerization polypyrrole particles on indium tin oxide (ITO).•Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO.•Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film.•Non-electroactive additives strongly influence polypyrrole nucleation on ITO.</description><subject>Additives</subject><subject>Atomic force microscopy</subject><subject>Cationic</subject><subject>Composition and phase identification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electrodeposition</subject><subject>Electrodeposition, electroplating</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Morphology</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Polymerization</subject><subject>Polypyrrole</subject><subject>Polypyrroles</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Surfactants</subject><subject>Theory and models of film growth</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LJDEQDeKCo7s_wFsugpduK52e7g6eRPxYELzoOWQqlTVDT2dMMuLsr980Ix4XCl5V8d4r6jF2LqAWILqrdZ2TqxsQbQ19XeCILcTQq6rppThmC4AWqg4UnLDTlNYAIJpGLtjuzjnCzIPjU5gqGssQg8HsP4gba_3cJB4mnt-Ik4njnqds_hDf7mMMY9kdJNsw7jcU_V-TfWGX8pP1uw3Pvkyf3n4zLaWf7IczY6JfX3jGXu_vXm4fq6fnh9-3N08VtiBzRUtjnOxUh9SZltAoUgP27coCEgHiIJQovXMrQQ2tyldKWYVLRFRCSHnGLg--2xjed5Sy3viENI5morBLWnQdgBya5UwVByrGkFIkp7fRb0zcawF6jlivdYlYzxFr6HWBorn4sjcJzeiimdCnb2Ez9FIum9n7-sCj8uuHp6gTepqQrI8lEm2D_8-Vf7gIlQ8</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Castro-Beltran, A.</creator><creator>Dominguez, C.</creator><creator>Bahena-Uribe, D.</creator><creator>Sepulveda-Guzman, S.</creator><creator>Cruz-Silva, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6120-9524</orcidid></search><sort><creationdate>20140901</creationdate><title>Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes</title><author>Castro-Beltran, A. ; Dominguez, C. ; Bahena-Uribe, D. ; Sepulveda-Guzman, S. ; Cruz-Silva, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e5aaf3696ce6a4eca9e98c74bd0cee0cc8191d0cffb1e2eb00099d9c5ccc91133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Additives</topic><topic>Atomic force microscopy</topic><topic>Cationic</topic><topic>Composition and phase identification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electrodeposition</topic><topic>Electrodeposition, electroplating</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Morphology</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Polymerization</topic><topic>Polypyrrole</topic><topic>Polypyrroles</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Surfactants</topic><topic>Theory and models of film growth</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro-Beltran, A.</creatorcontrib><creatorcontrib>Dominguez, C.</creatorcontrib><creatorcontrib>Bahena-Uribe, D.</creatorcontrib><creatorcontrib>Sepulveda-Guzman, S.</creatorcontrib><creatorcontrib>Cruz-Silva, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro-Beltran, A.</au><au>Dominguez, C.</au><au>Bahena-Uribe, D.</au><au>Sepulveda-Guzman, S.</au><au>Cruz-Silva, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes</atitle><jtitle>Thin solid films</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>566</volume><spage>23</spage><epage>31</epage><pages>23-31</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy. •Early-stage polymerization polypyrrole particles on indium tin oxide (ITO).•Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO.•Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film.•Non-electroactive additives strongly influence polypyrrole nucleation on ITO.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2014.07.014</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6120-9524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2014-09, Vol.566, p.23-31
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1660038253
source Access via ScienceDirect (Elsevier)
subjects Additives
Atomic force microscopy
Cationic
Composition and phase identification
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Deposition
Electrodeposition
Electrodeposition, electroplating
Exact sciences and technology
Materials science
Mechanical and acoustical properties
Methods of deposition of films and coatings
film growth and epitaxy
Morphology
Physical properties of thin films, nonelectronic
Physics
Polymerization
Polypyrrole
Polypyrroles
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Surfactants
Theory and models of film growth
Thin film structure and morphology
Thin films
title Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20non-electroactive%20additives%20on%20the%20early%20stage%20pyrrole%20electropolymerization%20on%20indium%20tin%20oxide%20electrodes&rft.jtitle=Thin%20solid%20films&rft.au=Castro-Beltran,%20A.&rft.date=2014-09-01&rft.volume=566&rft.spage=23&rft.epage=31&rft.pages=23-31&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2014.07.014&rft_dat=%3Cproquest_cross%3E1660038253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660038253&rft_id=info:pmid/&rft_els_id=S0040609014007354&rfr_iscdi=true