Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes
The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the elec...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2014-09, Vol.566, p.23-31 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | |
container_start_page | 23 |
container_title | Thin solid films |
container_volume | 566 |
creator | Castro-Beltran, A. Dominguez, C. Bahena-Uribe, D. Sepulveda-Guzman, S. Cruz-Silva, R. |
description | The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy.
•Early-stage polymerization polypyrrole particles on indium tin oxide (ITO).•Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO.•Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film.•Non-electroactive additives strongly influence polypyrrole nucleation on ITO. |
doi_str_mv | 10.1016/j.tsf.2014.07.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660038253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609014007354</els_id><sourcerecordid>1660038253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e5aaf3696ce6a4eca9e98c74bd0cee0cc8191d0cffb1e2eb00099d9c5ccc91133</originalsourceid><addsrcrecordid>eNp9UE1LJDEQDeKCo7s_wFsugpduK52e7g6eRPxYELzoOWQqlTVDT2dMMuLsr980Ix4XCl5V8d4r6jF2LqAWILqrdZ2TqxsQbQ19XeCILcTQq6rppThmC4AWqg4UnLDTlNYAIJpGLtjuzjnCzIPjU5gqGssQg8HsP4gba_3cJB4mnt-Ik4njnqds_hDf7mMMY9kdJNsw7jcU_V-TfWGX8pP1uw3Pvkyf3n4zLaWf7IczY6JfX3jGXu_vXm4fq6fnh9-3N08VtiBzRUtjnOxUh9SZltAoUgP27coCEgHiIJQovXMrQQ2tyldKWYVLRFRCSHnGLg--2xjed5Sy3viENI5morBLWnQdgBya5UwVByrGkFIkp7fRb0zcawF6jlivdYlYzxFr6HWBorn4sjcJzeiimdCnb2Ez9FIum9n7-sCj8uuHp6gTepqQrI8lEm2D_8-Vf7gIlQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660038253</pqid></control><display><type>article</type><title>Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Castro-Beltran, A. ; Dominguez, C. ; Bahena-Uribe, D. ; Sepulveda-Guzman, S. ; Cruz-Silva, R.</creator><creatorcontrib>Castro-Beltran, A. ; Dominguez, C. ; Bahena-Uribe, D. ; Sepulveda-Guzman, S. ; Cruz-Silva, R.</creatorcontrib><description>The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy.
•Early-stage polymerization polypyrrole particles on indium tin oxide (ITO).•Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO.•Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film.•Non-electroactive additives strongly influence polypyrrole nucleation on ITO.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2014.07.014</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Additives ; Atomic force microscopy ; Cationic ; Composition and phase identification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electrodeposition ; Electrodeposition, electroplating ; Exact sciences and technology ; Materials science ; Mechanical and acoustical properties ; Methods of deposition of films and coatings; film growth and epitaxy ; Morphology ; Physical properties of thin films, nonelectronic ; Physics ; Polymerization ; Polypyrrole ; Polypyrroles ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Surfactants ; Theory and models of film growth ; Thin film structure and morphology ; Thin films</subject><ispartof>Thin solid films, 2014-09, Vol.566, p.23-31</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e5aaf3696ce6a4eca9e98c74bd0cee0cc8191d0cffb1e2eb00099d9c5ccc91133</citedby><cites>FETCH-LOGICAL-c403t-e5aaf3696ce6a4eca9e98c74bd0cee0cc8191d0cffb1e2eb00099d9c5ccc91133</cites><orcidid>0000-0002-6120-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2014.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28733523$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro-Beltran, A.</creatorcontrib><creatorcontrib>Dominguez, C.</creatorcontrib><creatorcontrib>Bahena-Uribe, D.</creatorcontrib><creatorcontrib>Sepulveda-Guzman, S.</creatorcontrib><creatorcontrib>Cruz-Silva, R.</creatorcontrib><title>Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes</title><title>Thin solid films</title><description>The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy.
•Early-stage polymerization polypyrrole particles on indium tin oxide (ITO).•Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO.•Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film.•Non-electroactive additives strongly influence polypyrrole nucleation on ITO.</description><subject>Additives</subject><subject>Atomic force microscopy</subject><subject>Cationic</subject><subject>Composition and phase identification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electrodeposition</subject><subject>Electrodeposition, electroplating</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Morphology</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Polymerization</subject><subject>Polypyrrole</subject><subject>Polypyrroles</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Surfactants</subject><subject>Theory and models of film growth</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LJDEQDeKCo7s_wFsugpduK52e7g6eRPxYELzoOWQqlTVDT2dMMuLsr980Ix4XCl5V8d4r6jF2LqAWILqrdZ2TqxsQbQ19XeCILcTQq6rppThmC4AWqg4UnLDTlNYAIJpGLtjuzjnCzIPjU5gqGssQg8HsP4gba_3cJB4mnt-Ik4njnqds_hDf7mMMY9kdJNsw7jcU_V-TfWGX8pP1uw3Pvkyf3n4zLaWf7IczY6JfX3jGXu_vXm4fq6fnh9-3N08VtiBzRUtjnOxUh9SZltAoUgP27coCEgHiIJQovXMrQQ2tyldKWYVLRFRCSHnGLg--2xjed5Sy3viENI5morBLWnQdgBya5UwVByrGkFIkp7fRb0zcawF6jlivdYlYzxFr6HWBorn4sjcJzeiimdCnb2Ez9FIum9n7-sCj8uuHp6gTepqQrI8lEm2D_8-Vf7gIlQ8</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Castro-Beltran, A.</creator><creator>Dominguez, C.</creator><creator>Bahena-Uribe, D.</creator><creator>Sepulveda-Guzman, S.</creator><creator>Cruz-Silva, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6120-9524</orcidid></search><sort><creationdate>20140901</creationdate><title>Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes</title><author>Castro-Beltran, A. ; Dominguez, C. ; Bahena-Uribe, D. ; Sepulveda-Guzman, S. ; Cruz-Silva, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e5aaf3696ce6a4eca9e98c74bd0cee0cc8191d0cffb1e2eb00099d9c5ccc91133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Additives</topic><topic>Atomic force microscopy</topic><topic>Cationic</topic><topic>Composition and phase identification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electrodeposition</topic><topic>Electrodeposition, electroplating</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Morphology</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Polymerization</topic><topic>Polypyrrole</topic><topic>Polypyrroles</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Surfactants</topic><topic>Theory and models of film growth</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro-Beltran, A.</creatorcontrib><creatorcontrib>Dominguez, C.</creatorcontrib><creatorcontrib>Bahena-Uribe, D.</creatorcontrib><creatorcontrib>Sepulveda-Guzman, S.</creatorcontrib><creatorcontrib>Cruz-Silva, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro-Beltran, A.</au><au>Dominguez, C.</au><au>Bahena-Uribe, D.</au><au>Sepulveda-Guzman, S.</au><au>Cruz-Silva, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes</atitle><jtitle>Thin solid films</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>566</volume><spage>23</spage><epage>31</epage><pages>23-31</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The use of non-electroactive additives during electrodeposition of conducting polymers has long been used to modify the properties of deposited films. These additives can improve the adhesion, and not only change the morphology and deposition rate but also modify the chemical composition of the electrodeposited polymer. Several compounds have been used to modify deposition of polypyrrole; however, there is no systematic study of these compounds. In this work, we comparatively studied several water soluble chemical compounds, a cationic polymer, an anionic polymer, a cationic surfactant, and an anionic surfactant during potentiostatic electrodeposition of polypyrrole. In order to study the effect of these compounds on the interface, where the electrochemical polymerization takes place, we used electrochemical impedance spectroscopy. The morphology during the initial stage of growth was studied by atomic force microscopy, whereas the resulting polypyrrole films were observed by scanning electron microscopy.
•Early-stage polymerization polypyrrole particles on indium tin oxide (ITO).•Anionic additives promote pyrrole oxidation and polypyrrole film growth on ITO.•Cationic polyelectrolyte promotes adhesion between ITO and polypyrrole film.•Non-electroactive additives strongly influence polypyrrole nucleation on ITO.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2014.07.014</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6120-9524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2014-09, Vol.566, p.23-31 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660038253 |
source | Access via ScienceDirect (Elsevier) |
subjects | Additives Atomic force microscopy Cationic Composition and phase identification Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Deposition Electrodeposition Electrodeposition, electroplating Exact sciences and technology Materials science Mechanical and acoustical properties Methods of deposition of films and coatings film growth and epitaxy Morphology Physical properties of thin films, nonelectronic Physics Polymerization Polypyrrole Polypyrroles Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Surfactants Theory and models of film growth Thin film structure and morphology Thin films |
title | Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20non-electroactive%20additives%20on%20the%20early%20stage%20pyrrole%20electropolymerization%20on%20indium%20tin%20oxide%20electrodes&rft.jtitle=Thin%20solid%20films&rft.au=Castro-Beltran,%20A.&rft.date=2014-09-01&rft.volume=566&rft.spage=23&rft.epage=31&rft.pages=23-31&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2014.07.014&rft_dat=%3Cproquest_cross%3E1660038253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660038253&rft_id=info:pmid/&rft_els_id=S0040609014007354&rfr_iscdi=true |