A distance-based statistical analysis of fuzzy number-valued data
Real-life data associated with experimental outcomes are not always real-valued. In particular, opinions, perceptions, ratings, etc., are often assumed to be vague in nature, especially when they come from human valuations. Fuzzy numbers have extensively been considered to provide us with a convenie...
Gespeichert in:
Veröffentlicht in: | International journal of approximate reasoning 2014-10, Vol.55 (7), p.1487-1501 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1501 |
---|---|
container_issue | 7 |
container_start_page | 1487 |
container_title | International journal of approximate reasoning |
container_volume | 55 |
creator | Blanco-Fernández, A. Casals, M.R. Colubi, A. Corral, N. García-Bárzana, M. Gil, M.A. González-Rodríguez, G. López, M.T. Lubiano, M.A. Montenegro, M. Ramos-Guajardo, A.B. de la Rosa de Sáa, S. Sinova, B. |
description | Real-life data associated with experimental outcomes are not always real-valued. In particular, opinions, perceptions, ratings, etc., are often assumed to be vague in nature, especially when they come from human valuations. Fuzzy numbers have extensively been considered to provide us with a convenient tool to express these vague data. In analyzing fuzzy data from a statistical perspective one finds two key obstacles, namely, the nonlinearity associated with the usual arithmetic with fuzzy data and the lack of suitable models and limit results for the distribution of fuzzy-valued statistics. These obstacles can be frequently bypassed by using an appropriate metric between fuzzy data, the notion of random fuzzy set and a bootstrapped central limit theorem for general space-valued random elements. This paper aims to review these ideas and a methodology for the statistical analysis of fuzzy number data which has been developed along the last years.
•Review on distances between fuzzy number-valued data for statistics.•Random fuzzy numbers and related summary measures.•Review on the statistical analysis of fuzzy number-valued data. |
doi_str_mv | 10.1016/j.ijar.2013.09.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660038137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X13002120</els_id><sourcerecordid>1660038137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-51f78471e14afbe6979e6bb0736ca01a7e686b700ae0cfd68e6a980339fcc6913</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKccvSTOdOPuBryU4hcUvCh4WyabCWxIm7qbFOqvd0s9exre4XkH5hHiFqFAQHXfFb6jUCwAZQFVAQs4EzM0WuallnguZmCMyRXKr0txFWMHAEqXZiaWy6zxcaSt47ymyE2Wwpg23lGf0Zb6Q_QxG9qsnX5-Dtl22tQc8j31U2IbGulaXLTUR775m3Px-fz0sXrN1-8vb6vlOnclwpg_YKtNqZGxpLZmVemKVV2DlsoRIGlWRtUagBhc2yjDiioDUlatc6pCORd3p7u7MHxPHEe78dFx39OWhylaVApAGpQ6oYsT6sIQY-DW7oLfUDhYBHv0ZTt79GWPvixUNvlKpcdTidMTe8_BRuc5eWl8YDfaZvD_1X8BmqVz0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660038137</pqid></control><display><type>article</type><title>A distance-based statistical analysis of fuzzy number-valued data</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Blanco-Fernández, A. ; Casals, M.R. ; Colubi, A. ; Corral, N. ; García-Bárzana, M. ; Gil, M.A. ; González-Rodríguez, G. ; López, M.T. ; Lubiano, M.A. ; Montenegro, M. ; Ramos-Guajardo, A.B. ; de la Rosa de Sáa, S. ; Sinova, B.</creator><creatorcontrib>Blanco-Fernández, A. ; Casals, M.R. ; Colubi, A. ; Corral, N. ; García-Bárzana, M. ; Gil, M.A. ; González-Rodríguez, G. ; López, M.T. ; Lubiano, M.A. ; Montenegro, M. ; Ramos-Guajardo, A.B. ; de la Rosa de Sáa, S. ; Sinova, B. ; SMIRE Research Group at the University of Oviedo</creatorcontrib><description>Real-life data associated with experimental outcomes are not always real-valued. In particular, opinions, perceptions, ratings, etc., are often assumed to be vague in nature, especially when they come from human valuations. Fuzzy numbers have extensively been considered to provide us with a convenient tool to express these vague data. In analyzing fuzzy data from a statistical perspective one finds two key obstacles, namely, the nonlinearity associated with the usual arithmetic with fuzzy data and the lack of suitable models and limit results for the distribution of fuzzy-valued statistics. These obstacles can be frequently bypassed by using an appropriate metric between fuzzy data, the notion of random fuzzy set and a bootstrapped central limit theorem for general space-valued random elements. This paper aims to review these ideas and a methodology for the statistical analysis of fuzzy number data which has been developed along the last years.
•Review on distances between fuzzy number-valued data for statistics.•Random fuzzy numbers and related summary measures.•Review on the statistical analysis of fuzzy number-valued data.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/j.ijar.2013.09.020</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Distance between fuzzy data ; Fuzzy ; Fuzzy data ; Fuzzy logic ; Fuzzy set theory ; Fuzzy systems ; Obstacles ; Random experiments ; Statistical analysis ; Statistics ; Theorems</subject><ispartof>International journal of approximate reasoning, 2014-10, Vol.55 (7), p.1487-1501</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-51f78471e14afbe6979e6bb0736ca01a7e686b700ae0cfd68e6a980339fcc6913</citedby><cites>FETCH-LOGICAL-c410t-51f78471e14afbe6979e6bb0736ca01a7e686b700ae0cfd68e6a980339fcc6913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijar.2013.09.020$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Blanco-Fernández, A.</creatorcontrib><creatorcontrib>Casals, M.R.</creatorcontrib><creatorcontrib>Colubi, A.</creatorcontrib><creatorcontrib>Corral, N.</creatorcontrib><creatorcontrib>García-Bárzana, M.</creatorcontrib><creatorcontrib>Gil, M.A.</creatorcontrib><creatorcontrib>González-Rodríguez, G.</creatorcontrib><creatorcontrib>López, M.T.</creatorcontrib><creatorcontrib>Lubiano, M.A.</creatorcontrib><creatorcontrib>Montenegro, M.</creatorcontrib><creatorcontrib>Ramos-Guajardo, A.B.</creatorcontrib><creatorcontrib>de la Rosa de Sáa, S.</creatorcontrib><creatorcontrib>Sinova, B.</creatorcontrib><creatorcontrib>SMIRE Research Group at the University of Oviedo</creatorcontrib><title>A distance-based statistical analysis of fuzzy number-valued data</title><title>International journal of approximate reasoning</title><description>Real-life data associated with experimental outcomes are not always real-valued. In particular, opinions, perceptions, ratings, etc., are often assumed to be vague in nature, especially when they come from human valuations. Fuzzy numbers have extensively been considered to provide us with a convenient tool to express these vague data. In analyzing fuzzy data from a statistical perspective one finds two key obstacles, namely, the nonlinearity associated with the usual arithmetic with fuzzy data and the lack of suitable models and limit results for the distribution of fuzzy-valued statistics. These obstacles can be frequently bypassed by using an appropriate metric between fuzzy data, the notion of random fuzzy set and a bootstrapped central limit theorem for general space-valued random elements. This paper aims to review these ideas and a methodology for the statistical analysis of fuzzy number data which has been developed along the last years.
•Review on distances between fuzzy number-valued data for statistics.•Random fuzzy numbers and related summary measures.•Review on the statistical analysis of fuzzy number-valued data.</description><subject>Distance between fuzzy data</subject><subject>Fuzzy</subject><subject>Fuzzy data</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Obstacles</subject><subject>Random experiments</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Theorems</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKccvSTOdOPuBryU4hcUvCh4WyabCWxIm7qbFOqvd0s9exre4XkH5hHiFqFAQHXfFb6jUCwAZQFVAQs4EzM0WuallnguZmCMyRXKr0txFWMHAEqXZiaWy6zxcaSt47ymyE2Wwpg23lGf0Zb6Q_QxG9qsnX5-Dtl22tQc8j31U2IbGulaXLTUR775m3Px-fz0sXrN1-8vb6vlOnclwpg_YKtNqZGxpLZmVemKVV2DlsoRIGlWRtUagBhc2yjDiioDUlatc6pCORd3p7u7MHxPHEe78dFx39OWhylaVApAGpQ6oYsT6sIQY-DW7oLfUDhYBHv0ZTt79GWPvixUNvlKpcdTidMTe8_BRuc5eWl8YDfaZvD_1X8BmqVz0A</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Blanco-Fernández, A.</creator><creator>Casals, M.R.</creator><creator>Colubi, A.</creator><creator>Corral, N.</creator><creator>García-Bárzana, M.</creator><creator>Gil, M.A.</creator><creator>González-Rodríguez, G.</creator><creator>López, M.T.</creator><creator>Lubiano, M.A.</creator><creator>Montenegro, M.</creator><creator>Ramos-Guajardo, A.B.</creator><creator>de la Rosa de Sáa, S.</creator><creator>Sinova, B.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>A distance-based statistical analysis of fuzzy number-valued data</title><author>Blanco-Fernández, A. ; Casals, M.R. ; Colubi, A. ; Corral, N. ; García-Bárzana, M. ; Gil, M.A. ; González-Rodríguez, G. ; López, M.T. ; Lubiano, M.A. ; Montenegro, M. ; Ramos-Guajardo, A.B. ; de la Rosa de Sáa, S. ; Sinova, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-51f78471e14afbe6979e6bb0736ca01a7e686b700ae0cfd68e6a980339fcc6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Distance between fuzzy data</topic><topic>Fuzzy</topic><topic>Fuzzy data</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Obstacles</topic><topic>Random experiments</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanco-Fernández, A.</creatorcontrib><creatorcontrib>Casals, M.R.</creatorcontrib><creatorcontrib>Colubi, A.</creatorcontrib><creatorcontrib>Corral, N.</creatorcontrib><creatorcontrib>García-Bárzana, M.</creatorcontrib><creatorcontrib>Gil, M.A.</creatorcontrib><creatorcontrib>González-Rodríguez, G.</creatorcontrib><creatorcontrib>López, M.T.</creatorcontrib><creatorcontrib>Lubiano, M.A.</creatorcontrib><creatorcontrib>Montenegro, M.</creatorcontrib><creatorcontrib>Ramos-Guajardo, A.B.</creatorcontrib><creatorcontrib>de la Rosa de Sáa, S.</creatorcontrib><creatorcontrib>Sinova, B.</creatorcontrib><creatorcontrib>SMIRE Research Group at the University of Oviedo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanco-Fernández, A.</au><au>Casals, M.R.</au><au>Colubi, A.</au><au>Corral, N.</au><au>García-Bárzana, M.</au><au>Gil, M.A.</au><au>González-Rodríguez, G.</au><au>López, M.T.</au><au>Lubiano, M.A.</au><au>Montenegro, M.</au><au>Ramos-Guajardo, A.B.</au><au>de la Rosa de Sáa, S.</au><au>Sinova, B.</au><aucorp>SMIRE Research Group at the University of Oviedo</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A distance-based statistical analysis of fuzzy number-valued data</atitle><jtitle>International journal of approximate reasoning</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>55</volume><issue>7</issue><spage>1487</spage><epage>1501</epage><pages>1487-1501</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>Real-life data associated with experimental outcomes are not always real-valued. In particular, opinions, perceptions, ratings, etc., are often assumed to be vague in nature, especially when they come from human valuations. Fuzzy numbers have extensively been considered to provide us with a convenient tool to express these vague data. In analyzing fuzzy data from a statistical perspective one finds two key obstacles, namely, the nonlinearity associated with the usual arithmetic with fuzzy data and the lack of suitable models and limit results for the distribution of fuzzy-valued statistics. These obstacles can be frequently bypassed by using an appropriate metric between fuzzy data, the notion of random fuzzy set and a bootstrapped central limit theorem for general space-valued random elements. This paper aims to review these ideas and a methodology for the statistical analysis of fuzzy number data which has been developed along the last years.
•Review on distances between fuzzy number-valued data for statistics.•Random fuzzy numbers and related summary measures.•Review on the statistical analysis of fuzzy number-valued data.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ijar.2013.09.020</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-613X |
ispartof | International journal of approximate reasoning, 2014-10, Vol.55 (7), p.1487-1501 |
issn | 0888-613X 1873-4731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660038137 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Distance between fuzzy data Fuzzy Fuzzy data Fuzzy logic Fuzzy set theory Fuzzy systems Obstacles Random experiments Statistical analysis Statistics Theorems |
title | A distance-based statistical analysis of fuzzy number-valued data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20distance-based%20statistical%20analysis%20of%20fuzzy%20number-valued%20data&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Blanco-Fern%C3%A1ndez,%20A.&rft.aucorp=SMIRE%20Research%20Group%20at%20the%20University%20of%20Oviedo&rft.date=2014-10-01&rft.volume=55&rft.issue=7&rft.spage=1487&rft.epage=1501&rft.pages=1487-1501&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/j.ijar.2013.09.020&rft_dat=%3Cproquest_cross%3E1660038137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660038137&rft_id=info:pmid/&rft_els_id=S0888613X13002120&rfr_iscdi=true |