On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control

With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2014-04, Vol.351 (4), p.1939-1952
1. Verfasser: Boiko, Igor M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1952
container_issue 4
container_start_page 1939
container_title Journal of the Franklin Institute
container_volume 351
creator Boiko, Igor M.
description With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided. ► The notion of fractal dynamics is introduced. ► A conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. ► A model of fractal dynamics is proposed. ► The characteristics of fractal dynamics are studied in the frequency and time domains.
doi_str_mv 10.1016/j.jfranklin.2013.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660036189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003213000070</els_id><sourcerecordid>1660036189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-653c169307149152f6f92722a11d770f20c30d63fd4d600bd63d91f85069709c3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDXjJgoSZJHWaZVXxkip1A2vL2OPikjrFdiv173FVxJbVPHTP1cxl7BahREDxsC7XNij_1TtfVoB1CVgC1GdshNO2KyrR1edsBFla5HV1ya5iXOexRYARk0vPA_UquT1xQ6tAdM_1p0qJgvMrrrzh2V4n1XOv0i4QHyzfqqCiS05zc_Bq43TkzvPYO3NkNoMhrgefwtBfswur-kg3v3XM3p8e3-YvxWL5_DqfLQrdYJMKMak15kuhxabDSWWF7aq2qhSiaVuwFegajKitaYwA-Mit6dBOJyC6Fjpdj9ndyXcbhu8dxSQ3Lmrqe-Vp2EWJImO1wGmXpe1JqsMQYyArt8FtVDhIBHmMVK7lX6TyGKkElJnO5OxEUv5k7yjIqB15TcYF0kmawf3r8QMOX4NF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660036189</pqid></control><display><type>article</type><title>On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boiko, Igor M.</creator><creatorcontrib>Boiko, Igor M.</creatorcontrib><description>With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided. ► The notion of fractal dynamics is introduced. ► A conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. ► A model of fractal dynamics is proposed. ► The characteristics of fractal dynamics are studied in the frequency and time domains.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>DOI: 10.1016/j.jfranklin.2013.01.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Control systems ; Dynamic tests ; Dynamical systems ; Dynamics ; Fractal analysis ; Fractals ; Mathematical models ; Vibration</subject><ispartof>Journal of the Franklin Institute, 2014-04, Vol.351 (4), p.1939-1952</ispartof><rights>2013 The Franklin Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-653c169307149152f6f92722a11d770f20c30d63fd4d600bd63d91f85069709c3</citedby><cites>FETCH-LOGICAL-c414t-653c169307149152f6f92722a11d770f20c30d63fd4d600bd63d91f85069709c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2013.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Boiko, Igor M.</creatorcontrib><title>On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control</title><title>Journal of the Franklin Institute</title><description>With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided. ► The notion of fractal dynamics is introduced. ► A conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. ► A model of fractal dynamics is proposed. ► The characteristics of fractal dynamics are studied in the frequency and time domains.</description><subject>Control systems</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Mathematical models</subject><subject>Vibration</subject><issn>0016-0032</issn><issn>1879-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDXjJgoSZJHWaZVXxkip1A2vL2OPikjrFdiv173FVxJbVPHTP1cxl7BahREDxsC7XNij_1TtfVoB1CVgC1GdshNO2KyrR1edsBFla5HV1ya5iXOexRYARk0vPA_UquT1xQ6tAdM_1p0qJgvMrrrzh2V4n1XOv0i4QHyzfqqCiS05zc_Bq43TkzvPYO3NkNoMhrgefwtBfswur-kg3v3XM3p8e3-YvxWL5_DqfLQrdYJMKMak15kuhxabDSWWF7aq2qhSiaVuwFegajKitaYwA-Mit6dBOJyC6Fjpdj9ndyXcbhu8dxSQ3Lmrqe-Vp2EWJImO1wGmXpe1JqsMQYyArt8FtVDhIBHmMVK7lX6TyGKkElJnO5OxEUv5k7yjIqB15TcYF0kmawf3r8QMOX4NF</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Boiko, Igor M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140401</creationdate><title>On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control</title><author>Boiko, Igor M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-653c169307149152f6f92722a11d770f20c30d63fd4d600bd63d91f85069709c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Control systems</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Mathematical models</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boiko, Igor M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boiko, Igor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>351</volume><issue>4</issue><spage>1939</spage><epage>1952</epage><pages>1939-1952</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><abstract>With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided. ► The notion of fractal dynamics is introduced. ► A conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. ► A model of fractal dynamics is proposed. ► The characteristics of fractal dynamics are studied in the frequency and time domains.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2013.01.003</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2014-04, Vol.351 (4), p.1939-1952
issn 0016-0032
1879-2693
language eng
recordid cdi_proquest_miscellaneous_1660036189
source Access via ScienceDirect (Elsevier)
subjects Control systems
Dynamic tests
Dynamical systems
Dynamics
Fractal analysis
Fractals
Mathematical models
Vibration
title On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20relative%20degree,%20chattering%20and%20fractal%20nature%20of%20parasitic%20dynamics%20in%20sliding%20mode%20control&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Boiko,%20Igor%20M.&rft.date=2014-04-01&rft.volume=351&rft.issue=4&rft.spage=1939&rft.epage=1952&rft.pages=1939-1952&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2013.01.003&rft_dat=%3Cproquest_cross%3E1660036189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660036189&rft_id=info:pmid/&rft_els_id=S0016003213000070&rfr_iscdi=true