On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control
With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2014-04, Vol.351 (4), p.1939-1952 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1952 |
---|---|
container_issue | 4 |
container_start_page | 1939 |
container_title | Journal of the Franklin Institute |
container_volume | 351 |
creator | Boiko, Igor M. |
description | With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided.
► The notion of fractal dynamics is introduced. ► A conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. ► A model of fractal dynamics is proposed. ► The characteristics of fractal dynamics are studied in the frequency and time domains. |
doi_str_mv | 10.1016/j.jfranklin.2013.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660036189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003213000070</els_id><sourcerecordid>1660036189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-653c169307149152f6f92722a11d770f20c30d63fd4d600bd63d91f85069709c3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDXjJgoSZJHWaZVXxkip1A2vL2OPikjrFdiv173FVxJbVPHTP1cxl7BahREDxsC7XNij_1TtfVoB1CVgC1GdshNO2KyrR1edsBFla5HV1ya5iXOexRYARk0vPA_UquT1xQ6tAdM_1p0qJgvMrrrzh2V4n1XOv0i4QHyzfqqCiS05zc_Bq43TkzvPYO3NkNoMhrgefwtBfswur-kg3v3XM3p8e3-YvxWL5_DqfLQrdYJMKMak15kuhxabDSWWF7aq2qhSiaVuwFegajKitaYwA-Mit6dBOJyC6Fjpdj9ndyXcbhu8dxSQ3Lmrqe-Vp2EWJImO1wGmXpe1JqsMQYyArt8FtVDhIBHmMVK7lX6TyGKkElJnO5OxEUv5k7yjIqB15TcYF0kmawf3r8QMOX4NF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660036189</pqid></control><display><type>article</type><title>On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boiko, Igor M.</creator><creatorcontrib>Boiko, Igor M.</creatorcontrib><description>With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided.
► The notion of fractal dynamics is introduced. ► A conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. ► A model of fractal dynamics is proposed. ► The characteristics of fractal dynamics are studied in the frequency and time domains.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>DOI: 10.1016/j.jfranklin.2013.01.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Control systems ; Dynamic tests ; Dynamical systems ; Dynamics ; Fractal analysis ; Fractals ; Mathematical models ; Vibration</subject><ispartof>Journal of the Franklin Institute, 2014-04, Vol.351 (4), p.1939-1952</ispartof><rights>2013 The Franklin Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-653c169307149152f6f92722a11d770f20c30d63fd4d600bd63d91f85069709c3</citedby><cites>FETCH-LOGICAL-c414t-653c169307149152f6f92722a11d770f20c30d63fd4d600bd63d91f85069709c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2013.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Boiko, Igor M.</creatorcontrib><title>On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control</title><title>Journal of the Franklin Institute</title><description>With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided.
► The notion of fractal dynamics is introduced. ► A conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. ► A model of fractal dynamics is proposed. ► The characteristics of fractal dynamics are studied in the frequency and time domains.</description><subject>Control systems</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Mathematical models</subject><subject>Vibration</subject><issn>0016-0032</issn><issn>1879-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDXjJgoSZJHWaZVXxkip1A2vL2OPikjrFdiv173FVxJbVPHTP1cxl7BahREDxsC7XNij_1TtfVoB1CVgC1GdshNO2KyrR1edsBFla5HV1ya5iXOexRYARk0vPA_UquT1xQ6tAdM_1p0qJgvMrrrzh2V4n1XOv0i4QHyzfqqCiS05zc_Bq43TkzvPYO3NkNoMhrgefwtBfswur-kg3v3XM3p8e3-YvxWL5_DqfLQrdYJMKMak15kuhxabDSWWF7aq2qhSiaVuwFegajKitaYwA-Mit6dBOJyC6Fjpdj9ndyXcbhu8dxSQ3Lmrqe-Vp2EWJImO1wGmXpe1JqsMQYyArt8FtVDhIBHmMVK7lX6TyGKkElJnO5OxEUv5k7yjIqB15TcYF0kmawf3r8QMOX4NF</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Boiko, Igor M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140401</creationdate><title>On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control</title><author>Boiko, Igor M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-653c169307149152f6f92722a11d770f20c30d63fd4d600bd63d91f85069709c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Control systems</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Mathematical models</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boiko, Igor M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boiko, Igor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>351</volume><issue>4</issue><spage>1939</spage><epage>1952</epage><pages>1939-1952</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><abstract>With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided.
► The notion of fractal dynamics is introduced. ► A conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. ► A model of fractal dynamics is proposed. ► The characteristics of fractal dynamics are studied in the frequency and time domains.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2013.01.003</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2014-04, Vol.351 (4), p.1939-1952 |
issn | 0016-0032 1879-2693 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660036189 |
source | Access via ScienceDirect (Elsevier) |
subjects | Control systems Dynamic tests Dynamical systems Dynamics Fractal analysis Fractals Mathematical models Vibration |
title | On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20relative%20degree,%20chattering%20and%20fractal%20nature%20of%20parasitic%20dynamics%20in%20sliding%20mode%20control&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Boiko,%20Igor%20M.&rft.date=2014-04-01&rft.volume=351&rft.issue=4&rft.spage=1939&rft.epage=1952&rft.pages=1939-1952&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2013.01.003&rft_dat=%3Cproquest_cross%3E1660036189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660036189&rft_id=info:pmid/&rft_els_id=S0016003213000070&rfr_iscdi=true |