Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn–3.0Ag–0.5Cu lead-free solder

In the present study, nano-sized ZnO particle-reinforced Sn–3.0Ag–0.5Cu (SAC305) composite solder was prepared by mechanically dispersing nano-particles into SAC305 solder at 900°C for 2h. The effects of ZnO addition on microstructure, melting behavior and corresponding mechanical properties of SAC3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2014-11, Vol.618, p.389-397
Hauptverfasser: El-Daly, A.A., Elmosalami, T.A., Desoky, W.M., El-Shaarawy, M.G., Abdraboh, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue
container_start_page 389
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 618
creator El-Daly, A.A.
Elmosalami, T.A.
Desoky, W.M.
El-Shaarawy, M.G.
Abdraboh, A.M.
description In the present study, nano-sized ZnO particle-reinforced Sn–3.0Ag–0.5Cu (SAC305) composite solder was prepared by mechanically dispersing nano-particles into SAC305 solder at 900°C for 2h. The effects of ZnO addition on microstructure, melting behavior and corresponding mechanical properties of SAC305 solder were explored. Microstructure analysis revealed that the wurtzite ZnO particles were effective in reducing both the β-Sn grain size and spacing between Ag3Sn and Cu6Sn5 particles. The refined microstructure, which resulted in a strong adsorption effect and high surface-free energy of ZnO nanoparticles, could obstruct the dislocation slipping, and thus provides classical dispersion strengthening mechanism. This apparently enhances the yield stress (0.2%YS) and ultimate tensile strength (UTS) of SAC(305)–0.7%ZnO composite solder, whereas its ductility is lower than that of the SAC305 solder. In addition, ZnO particles keep the melting temperature of composite solder nearly at the SAC305 level although the pasty range is decreased. Empirical equations for 0.2% YS, UTS and elastic modulus E with the strain rate have been developed and the predicted tensile parameters for both solders are reasonably close to the present experimental data.
doi_str_mv 10.1016/j.msea.2014.09.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660036066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509314011332</els_id><sourcerecordid>1660036066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-757c9afe7776ba2abd4878d23e1fed86fa69cd2e6602099d8195de25f9f81faa3</originalsourceid><addsrcrecordid>eNp9kM2KFDEUhYMo2La-gKtsBDdV3qS6Ugm4GRp_BgZm4bhxE9LJzZgmlbRJ9cCIC9_BN_RJJk0PLl2dxT3nXM5HyGsGPQMm3u37uaLpObBND6oHLp-QFZPT0G3UIJ6SFSjOuhHU8Jy8qHUP0JwwrsivG0w1RKQOfS6zWUJOdIffzV3IhZrk6IxxCemWHko-YFnuafY0mZS7Gn6io9_SNT2YsgQbsdKCIbUe2w5f0t_ff4YeLm6bQj9ujzSicZ0viLTm6LC8JM-8iRVfPeqafP344Wb7ubu6_nS5vbjq7CCGpZvGySrjcZomsTPc7NxGTtLxAZlHJ4U3QlnHUQjgoJSTTI0O-eiVl8wbM6zJ23Nv2_DjiHXRc6gWYzQJ87Fq1pIwCBCiWfnZakuutaDXhxJmU-41A31Crff6hFqfUGtQuqFuoTeP_aZaE30xyYb6L8mllLBp7Nfk_dmHbexdwKKrDZgarVDQLtrl8L83D0qQl7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660036066</pqid></control><display><type>article</type><title>Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn–3.0Ag–0.5Cu lead-free solder</title><source>Elsevier ScienceDirect Journals Complete</source><creator>El-Daly, A.A. ; Elmosalami, T.A. ; Desoky, W.M. ; El-Shaarawy, M.G. ; Abdraboh, A.M.</creator><creatorcontrib>El-Daly, A.A. ; Elmosalami, T.A. ; Desoky, W.M. ; El-Shaarawy, M.G. ; Abdraboh, A.M.</creatorcontrib><description>In the present study, nano-sized ZnO particle-reinforced Sn–3.0Ag–0.5Cu (SAC305) composite solder was prepared by mechanically dispersing nano-particles into SAC305 solder at 900°C for 2h. The effects of ZnO addition on microstructure, melting behavior and corresponding mechanical properties of SAC305 solder were explored. Microstructure analysis revealed that the wurtzite ZnO particles were effective in reducing both the β-Sn grain size and spacing between Ag3Sn and Cu6Sn5 particles. The refined microstructure, which resulted in a strong adsorption effect and high surface-free energy of ZnO nanoparticles, could obstruct the dislocation slipping, and thus provides classical dispersion strengthening mechanism. This apparently enhances the yield stress (0.2%YS) and ultimate tensile strength (UTS) of SAC(305)–0.7%ZnO composite solder, whereas its ductility is lower than that of the SAC305 solder. In addition, ZnO particles keep the melting temperature of composite solder nearly at the SAC305 level although the pasty range is decreased. Empirical equations for 0.2% YS, UTS and elastic modulus E with the strain rate have been developed and the predicted tensile parameters for both solders are reasonably close to the present experimental data.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2014.09.028</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Brazing. Soldering ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Dislocations ; Elasticity. Plasticity ; Exact sciences and technology ; Joining, thermal cutting: metallurgical aspects ; Lead-free composite solders ; Materials science ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Melting ; Metals. Metallurgy ; Microstructure ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Other topics in nanoscale materials and structures ; Particulate composites ; Physics ; Solders ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Tin ; Zinc oxide</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2014-11, Vol.618, p.389-397</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-757c9afe7776ba2abd4878d23e1fed86fa69cd2e6602099d8195de25f9f81faa3</citedby><cites>FETCH-LOGICAL-c363t-757c9afe7776ba2abd4878d23e1fed86fa69cd2e6602099d8195de25f9f81faa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2014.09.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28880409$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Daly, A.A.</creatorcontrib><creatorcontrib>Elmosalami, T.A.</creatorcontrib><creatorcontrib>Desoky, W.M.</creatorcontrib><creatorcontrib>El-Shaarawy, M.G.</creatorcontrib><creatorcontrib>Abdraboh, A.M.</creatorcontrib><title>Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn–3.0Ag–0.5Cu lead-free solder</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>In the present study, nano-sized ZnO particle-reinforced Sn–3.0Ag–0.5Cu (SAC305) composite solder was prepared by mechanically dispersing nano-particles into SAC305 solder at 900°C for 2h. The effects of ZnO addition on microstructure, melting behavior and corresponding mechanical properties of SAC305 solder were explored. Microstructure analysis revealed that the wurtzite ZnO particles were effective in reducing both the β-Sn grain size and spacing between Ag3Sn and Cu6Sn5 particles. The refined microstructure, which resulted in a strong adsorption effect and high surface-free energy of ZnO nanoparticles, could obstruct the dislocation slipping, and thus provides classical dispersion strengthening mechanism. This apparently enhances the yield stress (0.2%YS) and ultimate tensile strength (UTS) of SAC(305)–0.7%ZnO composite solder, whereas its ductility is lower than that of the SAC305 solder. In addition, ZnO particles keep the melting temperature of composite solder nearly at the SAC305 level although the pasty range is decreased. Empirical equations for 0.2% YS, UTS and elastic modulus E with the strain rate have been developed and the predicted tensile parameters for both solders are reasonably close to the present experimental data.</description><subject>Applied sciences</subject><subject>Brazing. Soldering</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dislocations</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Lead-free composite solders</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Melting</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Solders</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Tin</subject><subject>Zinc oxide</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM2KFDEUhYMo2La-gKtsBDdV3qS6Ugm4GRp_BgZm4bhxE9LJzZgmlbRJ9cCIC9_BN_RJJk0PLl2dxT3nXM5HyGsGPQMm3u37uaLpObBND6oHLp-QFZPT0G3UIJ6SFSjOuhHU8Jy8qHUP0JwwrsivG0w1RKQOfS6zWUJOdIffzV3IhZrk6IxxCemWHko-YFnuafY0mZS7Gn6io9_SNT2YsgQbsdKCIbUe2w5f0t_ff4YeLm6bQj9ujzSicZ0viLTm6LC8JM-8iRVfPeqafP344Wb7ubu6_nS5vbjq7CCGpZvGySrjcZomsTPc7NxGTtLxAZlHJ4U3QlnHUQjgoJSTTI0O-eiVl8wbM6zJ23Nv2_DjiHXRc6gWYzQJ87Fq1pIwCBCiWfnZakuutaDXhxJmU-41A31Crff6hFqfUGtQuqFuoTeP_aZaE30xyYb6L8mllLBp7Nfk_dmHbexdwKKrDZgarVDQLtrl8L83D0qQl7s</recordid><startdate>20141117</startdate><enddate>20141117</enddate><creator>El-Daly, A.A.</creator><creator>Elmosalami, T.A.</creator><creator>Desoky, W.M.</creator><creator>El-Shaarawy, M.G.</creator><creator>Abdraboh, A.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141117</creationdate><title>Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn–3.0Ag–0.5Cu lead-free solder</title><author>El-Daly, A.A. ; Elmosalami, T.A. ; Desoky, W.M. ; El-Shaarawy, M.G. ; Abdraboh, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-757c9afe7776ba2abd4878d23e1fed86fa69cd2e6602099d8195de25f9f81faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Brazing. Soldering</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dislocations</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Lead-free composite solders</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Melting</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Solders</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Tin</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Daly, A.A.</creatorcontrib><creatorcontrib>Elmosalami, T.A.</creatorcontrib><creatorcontrib>Desoky, W.M.</creatorcontrib><creatorcontrib>El-Shaarawy, M.G.</creatorcontrib><creatorcontrib>Abdraboh, A.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Daly, A.A.</au><au>Elmosalami, T.A.</au><au>Desoky, W.M.</au><au>El-Shaarawy, M.G.</au><au>Abdraboh, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn–3.0Ag–0.5Cu lead-free solder</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2014-11-17</date><risdate>2014</risdate><volume>618</volume><spage>389</spage><epage>397</epage><pages>389-397</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In the present study, nano-sized ZnO particle-reinforced Sn–3.0Ag–0.5Cu (SAC305) composite solder was prepared by mechanically dispersing nano-particles into SAC305 solder at 900°C for 2h. The effects of ZnO addition on microstructure, melting behavior and corresponding mechanical properties of SAC305 solder were explored. Microstructure analysis revealed that the wurtzite ZnO particles were effective in reducing both the β-Sn grain size and spacing between Ag3Sn and Cu6Sn5 particles. The refined microstructure, which resulted in a strong adsorption effect and high surface-free energy of ZnO nanoparticles, could obstruct the dislocation slipping, and thus provides classical dispersion strengthening mechanism. This apparently enhances the yield stress (0.2%YS) and ultimate tensile strength (UTS) of SAC(305)–0.7%ZnO composite solder, whereas its ductility is lower than that of the SAC305 solder. In addition, ZnO particles keep the melting temperature of composite solder nearly at the SAC305 level although the pasty range is decreased. Empirical equations for 0.2% YS, UTS and elastic modulus E with the strain rate have been developed and the predicted tensile parameters for both solders are reasonably close to the present experimental data.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2014.09.028</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2014-11, Vol.618, p.389-397
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1660036066
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Brazing. Soldering
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Dislocations
Elasticity. Plasticity
Exact sciences and technology
Joining, thermal cutting: metallurgical aspects
Lead-free composite solders
Materials science
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Melting
Metals. Metallurgy
Microstructure
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Other topics in nanoscale materials and structures
Particulate composites
Physics
Solders
Solid surfaces and solid-solid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Tin
Zinc oxide
title Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn–3.0Ag–0.5Cu lead-free solder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20deformation%20behavior%20and%20melting%20property%20of%20nano-sized%20ZnO%20particles%20reinforced%20Sn%E2%80%933.0Ag%E2%80%930.5Cu%20lead-free%20solder&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=El-Daly,%20A.A.&rft.date=2014-11-17&rft.volume=618&rft.spage=389&rft.epage=397&rft.pages=389-397&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2014.09.028&rft_dat=%3Cproquest_cross%3E1660036066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660036066&rft_id=info:pmid/&rft_els_id=S0921509314011332&rfr_iscdi=true