Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking
Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have end...
Gespeichert in:
Veröffentlicht in: | Nanomedicine (London, England) England), 2015-03, Vol.10 (4), p.547-560 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 4 |
container_start_page | 547 |
container_title | Nanomedicine (London, England) |
container_volume | 10 |
creator | Pemberton, Gabriel D Childs, Peter Reid, Stuart Nikukar, Habib Tsimbouri, P Monica Gadegaard, Nikolaj Curtis, Adam SG Dalby, Matthew J |
description | Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction.
Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin (
),
and
, assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining.
Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries.
In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells
. |
doi_str_mv | 10.2217/nnm.14.134 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660030407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416964403</galeid><sourcerecordid>A416964403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-72f260bf4b80d1cc08b1cf3d59acb0e5882d56a5ca258e6336cc1dd16555c9173</originalsourceid><addsrcrecordid>eNptkUtv1DAUhS1ERR-w4QegSGxQpQx-J2FXVTwqVWUDa8txrlO3sT3YzmL-PZ5OAVFVXti--s7RsQ9CbwneUEq6jyH4DeEbwvgLdEI63rdykOzlw5m1ou-HY3Sa8x3GoqcEv0LHVHSU4X44QfONDjEbvUCTi_ProouLoYm2iblAHBedS5whQHa5sSn6xkOGYG53Xi9VAr4xsCz5UxOqUYnbOCe9vd01OkwPo3tn7l2YX6Mjq5cMbx73M_Tzy-cfl9_a6-9fry4vrlvDB1Hajloq8Wj52OOJGIP7kRjLJjFoM2Kob6GTkFoYTUUPkjFpDJkmIoUQZiAdO0MfDr7bFH-tkIvyLu8T6gBxzYpIiTHDHO_R90_Qu7imUNNVaui5kHjA_6i5_pFywcaStNmbqgteOck5ZpXaPEPVNYF3Jgawrs7_E5wfBCbFnBNYtU3O67RTBKt9q6q2qghXtdUKv3tMuo4epr_onxorIA-AXcuaIBtXKwJ1uFWFMy7Ac86_AWWKsF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698456090</pqid></control><display><type>article</type><title>Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking</title><source>PubMed (Medline)</source><source>MEDLINE</source><creator>Pemberton, Gabriel D ; Childs, Peter ; Reid, Stuart ; Nikukar, Habib ; Tsimbouri, P Monica ; Gadegaard, Nikolaj ; Curtis, Adam SG ; Dalby, Matthew J</creator><creatorcontrib>Pemberton, Gabriel D ; Childs, Peter ; Reid, Stuart ; Nikukar, Habib ; Tsimbouri, P Monica ; Gadegaard, Nikolaj ; Curtis, Adam SG ; Dalby, Matthew J</creatorcontrib><description>Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction.
Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin (
),
and
, assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining.
Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries.
In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells
.</description><identifier>ISSN: 1743-5889</identifier><identifier>EISSN: 1748-6963</identifier><identifier>DOI: 10.2217/nnm.14.134</identifier><identifier>PMID: 25723089</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Care and treatment ; Cell Culture Techniques - instrumentation ; Cell Differentiation ; Cell Line ; Cell proliferation ; Core Binding Factor Alpha 1 Subunit - genetics ; Diagnosis ; Gene Expression Regulation ; Health aspects ; Humans ; mechanotransduction ; Mechanotransduction, Cellular ; mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; nanotopography ; nanovibration ; osteoblastogenesis ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteogenesis ; Osteonectin - genetics ; piezo effect ; Regenerative Medicine ; Sp7 Transcription Factor ; Spinal cord injuries ; Stem cells ; Transcription Factors - genetics ; Vibration</subject><ispartof>Nanomedicine (London, England), 2015-03, Vol.10 (4), p.547-560</ispartof><rights>COPYRIGHT 2015 Future Medicine Ltd.</rights><rights>2015 Future Medicine Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-72f260bf4b80d1cc08b1cf3d59acb0e5882d56a5ca258e6336cc1dd16555c9173</citedby><cites>FETCH-LOGICAL-c495t-72f260bf4b80d1cc08b1cf3d59acb0e5882d56a5ca258e6336cc1dd16555c9173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25723089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pemberton, Gabriel D</creatorcontrib><creatorcontrib>Childs, Peter</creatorcontrib><creatorcontrib>Reid, Stuart</creatorcontrib><creatorcontrib>Nikukar, Habib</creatorcontrib><creatorcontrib>Tsimbouri, P Monica</creatorcontrib><creatorcontrib>Gadegaard, Nikolaj</creatorcontrib><creatorcontrib>Curtis, Adam SG</creatorcontrib><creatorcontrib>Dalby, Matthew J</creatorcontrib><title>Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking</title><title>Nanomedicine (London, England)</title><addtitle>Nanomedicine (Lond)</addtitle><description>Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction.
Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin (
),
and
, assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining.
Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries.
In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells
.</description><subject>Care and treatment</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell proliferation</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Diagnosis</subject><subject>Gene Expression Regulation</subject><subject>Health aspects</subject><subject>Humans</subject><subject>mechanotransduction</subject><subject>Mechanotransduction, Cellular</subject><subject>mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>nanotopography</subject><subject>nanovibration</subject><subject>osteoblastogenesis</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>Osteonectin - genetics</subject><subject>piezo effect</subject><subject>Regenerative Medicine</subject><subject>Sp7 Transcription Factor</subject><subject>Spinal cord injuries</subject><subject>Stem cells</subject><subject>Transcription Factors - genetics</subject><subject>Vibration</subject><issn>1743-5889</issn><issn>1748-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkUtv1DAUhS1ERR-w4QegSGxQpQx-J2FXVTwqVWUDa8txrlO3sT3YzmL-PZ5OAVFVXti--s7RsQ9CbwneUEq6jyH4DeEbwvgLdEI63rdykOzlw5m1ou-HY3Sa8x3GoqcEv0LHVHSU4X44QfONDjEbvUCTi_ProouLoYm2iblAHBedS5whQHa5sSn6xkOGYG53Xi9VAr4xsCz5UxOqUYnbOCe9vd01OkwPo3tn7l2YX6Mjq5cMbx73M_Tzy-cfl9_a6-9fry4vrlvDB1Hajloq8Wj52OOJGIP7kRjLJjFoM2Kob6GTkFoYTUUPkjFpDJkmIoUQZiAdO0MfDr7bFH-tkIvyLu8T6gBxzYpIiTHDHO_R90_Qu7imUNNVaui5kHjA_6i5_pFywcaStNmbqgteOck5ZpXaPEPVNYF3Jgawrs7_E5wfBCbFnBNYtU3O67RTBKt9q6q2qghXtdUKv3tMuo4epr_onxorIA-AXcuaIBtXKwJ1uFWFMy7Ac86_AWWKsF8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Pemberton, Gabriel D</creator><creator>Childs, Peter</creator><creator>Reid, Stuart</creator><creator>Nikukar, Habib</creator><creator>Tsimbouri, P Monica</creator><creator>Gadegaard, Nikolaj</creator><creator>Curtis, Adam SG</creator><creator>Dalby, Matthew J</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20150301</creationdate><title>Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking</title><author>Pemberton, Gabriel D ; Childs, Peter ; Reid, Stuart ; Nikukar, Habib ; Tsimbouri, P Monica ; Gadegaard, Nikolaj ; Curtis, Adam SG ; Dalby, Matthew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-72f260bf4b80d1cc08b1cf3d59acb0e5882d56a5ca258e6336cc1dd16555c9173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Care and treatment</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell proliferation</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Diagnosis</topic><topic>Gene Expression Regulation</topic><topic>Health aspects</topic><topic>Humans</topic><topic>mechanotransduction</topic><topic>Mechanotransduction, Cellular</topic><topic>mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>nanotopography</topic><topic>nanovibration</topic><topic>osteoblastogenesis</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>Osteonectin - genetics</topic><topic>piezo effect</topic><topic>Regenerative Medicine</topic><topic>Sp7 Transcription Factor</topic><topic>Spinal cord injuries</topic><topic>Stem cells</topic><topic>Transcription Factors - genetics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pemberton, Gabriel D</creatorcontrib><creatorcontrib>Childs, Peter</creatorcontrib><creatorcontrib>Reid, Stuart</creatorcontrib><creatorcontrib>Nikukar, Habib</creatorcontrib><creatorcontrib>Tsimbouri, P Monica</creatorcontrib><creatorcontrib>Gadegaard, Nikolaj</creatorcontrib><creatorcontrib>Curtis, Adam SG</creatorcontrib><creatorcontrib>Dalby, Matthew J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>UK & Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Nanomedicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pemberton, Gabriel D</au><au>Childs, Peter</au><au>Reid, Stuart</au><au>Nikukar, Habib</au><au>Tsimbouri, P Monica</au><au>Gadegaard, Nikolaj</au><au>Curtis, Adam SG</au><au>Dalby, Matthew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking</atitle><jtitle>Nanomedicine (London, England)</jtitle><addtitle>Nanomedicine (Lond)</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>547</spage><epage>560</epage><pages>547-560</pages><issn>1743-5889</issn><eissn>1748-6963</eissn><abstract>Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction.
Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin (
),
and
, assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining.
Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries.
In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells
.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>25723089</pmid><doi>10.2217/nnm.14.134</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-5889 |
ispartof | Nanomedicine (London, England), 2015-03, Vol.10 (4), p.547-560 |
issn | 1743-5889 1748-6963 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660030407 |
source | PubMed (Medline); MEDLINE |
subjects | Care and treatment Cell Culture Techniques - instrumentation Cell Differentiation Cell Line Cell proliferation Core Binding Factor Alpha 1 Subunit - genetics Diagnosis Gene Expression Regulation Health aspects Humans mechanotransduction Mechanotransduction, Cellular mesenchymal stem cells Mesenchymal Stem Cells - cytology nanotopography nanovibration osteoblastogenesis Osteoblasts - cytology Osteoblasts - metabolism Osteogenesis Osteonectin - genetics piezo effect Regenerative Medicine Sp7 Transcription Factor Spinal cord injuries Stem cells Transcription Factors - genetics Vibration |
title | Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20stimulation%20of%20osteoblastogenesis%20from%20mesenchymal%20stem%20cells:%20nanotopography%20and%20nanokicking&rft.jtitle=Nanomedicine%20(London,%20England)&rft.au=Pemberton,%20Gabriel%20D&rft.date=2015-03-01&rft.volume=10&rft.issue=4&rft.spage=547&rft.epage=560&rft.pages=547-560&rft.issn=1743-5889&rft.eissn=1748-6963&rft_id=info:doi/10.2217/nnm.14.134&rft_dat=%3Cgale_proqu%3EA416964403%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698456090&rft_id=info:pmid/25723089&rft_galeid=A416964403&rfr_iscdi=true |