Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking

Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have end...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomedicine (London, England) England), 2015-03, Vol.10 (4), p.547-560
Hauptverfasser: Pemberton, Gabriel D, Childs, Peter, Reid, Stuart, Nikukar, Habib, Tsimbouri, P Monica, Gadegaard, Nikolaj, Curtis, Adam SG, Dalby, Matthew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 4
container_start_page 547
container_title Nanomedicine (London, England)
container_volume 10
creator Pemberton, Gabriel D
Childs, Peter
Reid, Stuart
Nikukar, Habib
Tsimbouri, P Monica
Gadegaard, Nikolaj
Curtis, Adam SG
Dalby, Matthew J
description Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction. Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin ( ), and , assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining. Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries. In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells .
doi_str_mv 10.2217/nnm.14.134
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660030407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416964403</galeid><sourcerecordid>A416964403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-72f260bf4b80d1cc08b1cf3d59acb0e5882d56a5ca258e6336cc1dd16555c9173</originalsourceid><addsrcrecordid>eNptkUtv1DAUhS1ERR-w4QegSGxQpQx-J2FXVTwqVWUDa8txrlO3sT3YzmL-PZ5OAVFVXti--s7RsQ9CbwneUEq6jyH4DeEbwvgLdEI63rdykOzlw5m1ou-HY3Sa8x3GoqcEv0LHVHSU4X44QfONDjEbvUCTi_ProouLoYm2iblAHBedS5whQHa5sSn6xkOGYG53Xi9VAr4xsCz5UxOqUYnbOCe9vd01OkwPo3tn7l2YX6Mjq5cMbx73M_Tzy-cfl9_a6-9fry4vrlvDB1Hajloq8Wj52OOJGIP7kRjLJjFoM2Kob6GTkFoYTUUPkjFpDJkmIoUQZiAdO0MfDr7bFH-tkIvyLu8T6gBxzYpIiTHDHO_R90_Qu7imUNNVaui5kHjA_6i5_pFywcaStNmbqgteOck5ZpXaPEPVNYF3Jgawrs7_E5wfBCbFnBNYtU3O67RTBKt9q6q2qghXtdUKv3tMuo4epr_onxorIA-AXcuaIBtXKwJ1uFWFMy7Ac86_AWWKsF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698456090</pqid></control><display><type>article</type><title>Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking</title><source>PubMed (Medline)</source><source>MEDLINE</source><creator>Pemberton, Gabriel D ; Childs, Peter ; Reid, Stuart ; Nikukar, Habib ; Tsimbouri, P Monica ; Gadegaard, Nikolaj ; Curtis, Adam SG ; Dalby, Matthew J</creator><creatorcontrib>Pemberton, Gabriel D ; Childs, Peter ; Reid, Stuart ; Nikukar, Habib ; Tsimbouri, P Monica ; Gadegaard, Nikolaj ; Curtis, Adam SG ; Dalby, Matthew J</creatorcontrib><description>Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction. Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin ( ), and , assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining. Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries. In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells .</description><identifier>ISSN: 1743-5889</identifier><identifier>EISSN: 1748-6963</identifier><identifier>DOI: 10.2217/nnm.14.134</identifier><identifier>PMID: 25723089</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Care and treatment ; Cell Culture Techniques - instrumentation ; Cell Differentiation ; Cell Line ; Cell proliferation ; Core Binding Factor Alpha 1 Subunit - genetics ; Diagnosis ; Gene Expression Regulation ; Health aspects ; Humans ; mechanotransduction ; Mechanotransduction, Cellular ; mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; nanotopography ; nanovibration ; osteoblastogenesis ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteogenesis ; Osteonectin - genetics ; piezo effect ; Regenerative Medicine ; Sp7 Transcription Factor ; Spinal cord injuries ; Stem cells ; Transcription Factors - genetics ; Vibration</subject><ispartof>Nanomedicine (London, England), 2015-03, Vol.10 (4), p.547-560</ispartof><rights>COPYRIGHT 2015 Future Medicine Ltd.</rights><rights>2015 Future Medicine Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-72f260bf4b80d1cc08b1cf3d59acb0e5882d56a5ca258e6336cc1dd16555c9173</citedby><cites>FETCH-LOGICAL-c495t-72f260bf4b80d1cc08b1cf3d59acb0e5882d56a5ca258e6336cc1dd16555c9173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25723089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pemberton, Gabriel D</creatorcontrib><creatorcontrib>Childs, Peter</creatorcontrib><creatorcontrib>Reid, Stuart</creatorcontrib><creatorcontrib>Nikukar, Habib</creatorcontrib><creatorcontrib>Tsimbouri, P Monica</creatorcontrib><creatorcontrib>Gadegaard, Nikolaj</creatorcontrib><creatorcontrib>Curtis, Adam SG</creatorcontrib><creatorcontrib>Dalby, Matthew J</creatorcontrib><title>Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking</title><title>Nanomedicine (London, England)</title><addtitle>Nanomedicine (Lond)</addtitle><description>Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction. Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin ( ), and , assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining. Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries. In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells .</description><subject>Care and treatment</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell proliferation</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Diagnosis</subject><subject>Gene Expression Regulation</subject><subject>Health aspects</subject><subject>Humans</subject><subject>mechanotransduction</subject><subject>Mechanotransduction, Cellular</subject><subject>mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>nanotopography</subject><subject>nanovibration</subject><subject>osteoblastogenesis</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>Osteonectin - genetics</subject><subject>piezo effect</subject><subject>Regenerative Medicine</subject><subject>Sp7 Transcription Factor</subject><subject>Spinal cord injuries</subject><subject>Stem cells</subject><subject>Transcription Factors - genetics</subject><subject>Vibration</subject><issn>1743-5889</issn><issn>1748-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkUtv1DAUhS1ERR-w4QegSGxQpQx-J2FXVTwqVWUDa8txrlO3sT3YzmL-PZ5OAVFVXti--s7RsQ9CbwneUEq6jyH4DeEbwvgLdEI63rdykOzlw5m1ou-HY3Sa8x3GoqcEv0LHVHSU4X44QfONDjEbvUCTi_ProouLoYm2iblAHBedS5whQHa5sSn6xkOGYG53Xi9VAr4xsCz5UxOqUYnbOCe9vd01OkwPo3tn7l2YX6Mjq5cMbx73M_Tzy-cfl9_a6-9fry4vrlvDB1Hajloq8Wj52OOJGIP7kRjLJjFoM2Kob6GTkFoYTUUPkjFpDJkmIoUQZiAdO0MfDr7bFH-tkIvyLu8T6gBxzYpIiTHDHO_R90_Qu7imUNNVaui5kHjA_6i5_pFywcaStNmbqgteOck5ZpXaPEPVNYF3Jgawrs7_E5wfBCbFnBNYtU3O67RTBKt9q6q2qghXtdUKv3tMuo4epr_onxorIA-AXcuaIBtXKwJ1uFWFMy7Ac86_AWWKsF8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Pemberton, Gabriel D</creator><creator>Childs, Peter</creator><creator>Reid, Stuart</creator><creator>Nikukar, Habib</creator><creator>Tsimbouri, P Monica</creator><creator>Gadegaard, Nikolaj</creator><creator>Curtis, Adam SG</creator><creator>Dalby, Matthew J</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20150301</creationdate><title>Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking</title><author>Pemberton, Gabriel D ; Childs, Peter ; Reid, Stuart ; Nikukar, Habib ; Tsimbouri, P Monica ; Gadegaard, Nikolaj ; Curtis, Adam SG ; Dalby, Matthew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-72f260bf4b80d1cc08b1cf3d59acb0e5882d56a5ca258e6336cc1dd16555c9173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Care and treatment</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell proliferation</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Diagnosis</topic><topic>Gene Expression Regulation</topic><topic>Health aspects</topic><topic>Humans</topic><topic>mechanotransduction</topic><topic>Mechanotransduction, Cellular</topic><topic>mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>nanotopography</topic><topic>nanovibration</topic><topic>osteoblastogenesis</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>Osteonectin - genetics</topic><topic>piezo effect</topic><topic>Regenerative Medicine</topic><topic>Sp7 Transcription Factor</topic><topic>Spinal cord injuries</topic><topic>Stem cells</topic><topic>Transcription Factors - genetics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pemberton, Gabriel D</creatorcontrib><creatorcontrib>Childs, Peter</creatorcontrib><creatorcontrib>Reid, Stuart</creatorcontrib><creatorcontrib>Nikukar, Habib</creatorcontrib><creatorcontrib>Tsimbouri, P Monica</creatorcontrib><creatorcontrib>Gadegaard, Nikolaj</creatorcontrib><creatorcontrib>Curtis, Adam SG</creatorcontrib><creatorcontrib>Dalby, Matthew J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>UK &amp; Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Nanomedicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pemberton, Gabriel D</au><au>Childs, Peter</au><au>Reid, Stuart</au><au>Nikukar, Habib</au><au>Tsimbouri, P Monica</au><au>Gadegaard, Nikolaj</au><au>Curtis, Adam SG</au><au>Dalby, Matthew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking</atitle><jtitle>Nanomedicine (London, England)</jtitle><addtitle>Nanomedicine (Lond)</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>547</spage><epage>560</epage><pages>547-560</pages><issn>1743-5889</issn><eissn>1748-6963</eissn><abstract>Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000-5000 Hz) piezo-driven nanodisplacements (16-30 nm displacements) in a vertical direction. Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin ( ), and , assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining. Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries. In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells .</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>25723089</pmid><doi>10.2217/nnm.14.134</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1743-5889
ispartof Nanomedicine (London, England), 2015-03, Vol.10 (4), p.547-560
issn 1743-5889
1748-6963
language eng
recordid cdi_proquest_miscellaneous_1660030407
source PubMed (Medline); MEDLINE
subjects Care and treatment
Cell Culture Techniques - instrumentation
Cell Differentiation
Cell Line
Cell proliferation
Core Binding Factor Alpha 1 Subunit - genetics
Diagnosis
Gene Expression Regulation
Health aspects
Humans
mechanotransduction
Mechanotransduction, Cellular
mesenchymal stem cells
Mesenchymal Stem Cells - cytology
nanotopography
nanovibration
osteoblastogenesis
Osteoblasts - cytology
Osteoblasts - metabolism
Osteogenesis
Osteonectin - genetics
piezo effect
Regenerative Medicine
Sp7 Transcription Factor
Spinal cord injuries
Stem cells
Transcription Factors - genetics
Vibration
title Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20stimulation%20of%20osteoblastogenesis%20from%20mesenchymal%20stem%20cells:%20nanotopography%20and%20nanokicking&rft.jtitle=Nanomedicine%20(London,%20England)&rft.au=Pemberton,%20Gabriel%20D&rft.date=2015-03-01&rft.volume=10&rft.issue=4&rft.spage=547&rft.epage=560&rft.pages=547-560&rft.issn=1743-5889&rft.eissn=1748-6963&rft_id=info:doi/10.2217/nnm.14.134&rft_dat=%3Cgale_proqu%3EA416964403%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698456090&rft_id=info:pmid/25723089&rft_galeid=A416964403&rfr_iscdi=true