Emoticon Recommendation System to Richen Your Online Communication

Japanese emoticons are widely used to express users' feelings and intentions in social media, blogs and instant messages. Japanese smartphone keypads have a feature that shows a list of emoticons, enabling users to insert emoticons simply by touching them. However, this list of emoticons contai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of multimedia data engineering & management 2014-01, Vol.5 (1), p.14-33
Hauptverfasser: Urabe, Yuki, Rzepka, Rafal, Araki, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 14
container_title International journal of multimedia data engineering & management
container_volume 5
creator Urabe, Yuki
Rzepka, Rafal
Araki, Kenji
description Japanese emoticons are widely used to express users' feelings and intentions in social media, blogs and instant messages. Japanese smartphone keypads have a feature that shows a list of emoticons, enabling users to insert emoticons simply by touching them. However, this list of emoticons contains more than 200, which is difficult to choose from, so a method to reorder the list and recommend appropriate emoticons to users is necessary. This paper proposes an emoticon recommendation method based on the emotive statements of users and their past selections of emoticons. The system is comprised of an affect analysis system and an original emoticon database: a table of 59 emoticons numerically categorized by 10 emotion types. The authors' experiments showed that 73.0% of chosen emoticons were among the top five recommended by the system, which is an improvement of 43.5% over the method used in current smartphones, which is based only on users' past emoticon selections.
doi_str_mv 10.4018/ijmdem.2014010102
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660011788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760575683</galeid><sourcerecordid>A760575683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c2c325005f82e17bc479f2a71a3370163730c1063fc4e7e87241677175872b63</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoOOZ-gHcFbxTszFeT9nKOOYXBYO7Gq9BlaZfRNrNpL_bvPVvF4dAEck7gOW_enIPQLcFDjkn8ZLfl2pRDiglcYdML1CMJl2EccXr5kzN-jQbebzGsiEtJeA89T0rXWO2qYGG0K0tTrdPGwvV97xtTBo0LFlZvTBV8uLYO5lVhKxOMgWwrq4_oDbrK0sKbwXfso-XLZDl-DWfz6dt4NAt1RHkTaqoZjeDlLKaGyJXmMsloKknKmMREMMmwJliwTHMjTSwpJwJMygjSlWB9dN_J7mr32RrfqNJ6bYoirYxrvSJCYEyIjGNA787QLZivwJyiCaNMJjHEPnrsqDwtjFq1Hn7m4fA23zQ-T1vv1UgKHMlIxAxw0uG6dt7XJlO72pZpvVcEq8MYVDcGdRoD1Ey7Gpvbk4dDu9Xvdqtju_8VikDp4S-lc1Dt1hn7Ai0Wn3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932379829</pqid></control><display><type>article</type><title>Emoticon Recommendation System to Richen Your Online Communication</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Urabe, Yuki ; Rzepka, Rafal ; Araki, Kenji</creator><creatorcontrib>Urabe, Yuki ; Rzepka, Rafal ; Araki, Kenji</creatorcontrib><description>Japanese emoticons are widely used to express users' feelings and intentions in social media, blogs and instant messages. Japanese smartphone keypads have a feature that shows a list of emoticons, enabling users to insert emoticons simply by touching them. However, this list of emoticons contains more than 200, which is difficult to choose from, so a method to reorder the list and recommend appropriate emoticons to users is necessary. This paper proposes an emoticon recommendation method based on the emotive statements of users and their past selections of emoticons. The system is comprised of an affect analysis system and an original emoticon database: a table of 59 emoticons numerically categorized by 10 emotion types. The authors' experiments showed that 73.0% of chosen emoticons were among the top five recommended by the system, which is an improvement of 43.5% over the method used in current smartphones, which is based only on users' past emoticon selections.</description><identifier>ISSN: 1947-8534</identifier><identifier>EISSN: 1947-8542</identifier><identifier>DOI: 10.4018/ijmdem.2014010102</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Analysis ; Computer mediated communication ; Emotional icons ; Emotions ; Filtering systems ; Instant messaging ; Recommender systems ; Smart phones ; Smartphones ; Social networks</subject><ispartof>International journal of multimedia data engineering &amp; management, 2014-01, Vol.5 (1), p.14-33</ispartof><rights>COPYRIGHT 2014 IGI Global</rights><rights>Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c2c325005f82e17bc479f2a71a3370163730c1063fc4e7e87241677175872b63</citedby><cites>FETCH-LOGICAL-c524t-c2c325005f82e17bc479f2a71a3370163730c1063fc4e7e87241677175872b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932379829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,33744,43804,64384,64386,64388,72340</link.rule.ids></links><search><creatorcontrib>Urabe, Yuki</creatorcontrib><creatorcontrib>Rzepka, Rafal</creatorcontrib><creatorcontrib>Araki, Kenji</creatorcontrib><title>Emoticon Recommendation System to Richen Your Online Communication</title><title>International journal of multimedia data engineering &amp; management</title><description>Japanese emoticons are widely used to express users' feelings and intentions in social media, blogs and instant messages. Japanese smartphone keypads have a feature that shows a list of emoticons, enabling users to insert emoticons simply by touching them. However, this list of emoticons contains more than 200, which is difficult to choose from, so a method to reorder the list and recommend appropriate emoticons to users is necessary. This paper proposes an emoticon recommendation method based on the emotive statements of users and their past selections of emoticons. The system is comprised of an affect analysis system and an original emoticon database: a table of 59 emoticons numerically categorized by 10 emotion types. The authors' experiments showed that 73.0% of chosen emoticons were among the top five recommended by the system, which is an improvement of 43.5% over the method used in current smartphones, which is based only on users' past emoticon selections.</description><subject>Analysis</subject><subject>Computer mediated communication</subject><subject>Emotional icons</subject><subject>Emotions</subject><subject>Filtering systems</subject><subject>Instant messaging</subject><subject>Recommender systems</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>Social networks</subject><issn>1947-8534</issn><issn>1947-8542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1LwzAUhoMoOOZ-gHcFbxTszFeT9nKOOYXBYO7Gq9BlaZfRNrNpL_bvPVvF4dAEck7gOW_enIPQLcFDjkn8ZLfl2pRDiglcYdML1CMJl2EccXr5kzN-jQbebzGsiEtJeA89T0rXWO2qYGG0K0tTrdPGwvV97xtTBo0LFlZvTBV8uLYO5lVhKxOMgWwrq4_oDbrK0sKbwXfso-XLZDl-DWfz6dt4NAt1RHkTaqoZjeDlLKaGyJXmMsloKknKmMREMMmwJliwTHMjTSwpJwJMygjSlWB9dN_J7mr32RrfqNJ6bYoirYxrvSJCYEyIjGNA787QLZivwJyiCaNMJjHEPnrsqDwtjFq1Hn7m4fA23zQ-T1vv1UgKHMlIxAxw0uG6dt7XJlO72pZpvVcEq8MYVDcGdRoD1Ey7Gpvbk4dDu9Xvdqtju_8VikDp4S-lc1Dt1hn7Ai0Wn3c</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Urabe, Yuki</creator><creator>Rzepka, Rafal</creator><creator>Araki, Kenji</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>8BP</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20140101</creationdate><title>Emoticon Recommendation System to Richen Your Online Communication</title><author>Urabe, Yuki ; Rzepka, Rafal ; Araki, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c2c325005f82e17bc479f2a71a3370163730c1063fc4e7e87241677175872b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Computer mediated communication</topic><topic>Emotional icons</topic><topic>Emotions</topic><topic>Filtering systems</topic><topic>Instant messaging</topic><topic>Recommender systems</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urabe, Yuki</creatorcontrib><creatorcontrib>Rzepka, Rafal</creatorcontrib><creatorcontrib>Araki, Kenji</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Library &amp; Information Sciences Abstracts (LISA) - CILIP Edition</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>International journal of multimedia data engineering &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urabe, Yuki</au><au>Rzepka, Rafal</au><au>Araki, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emoticon Recommendation System to Richen Your Online Communication</atitle><jtitle>International journal of multimedia data engineering &amp; management</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>14</spage><epage>33</epage><pages>14-33</pages><issn>1947-8534</issn><eissn>1947-8542</eissn><abstract>Japanese emoticons are widely used to express users' feelings and intentions in social media, blogs and instant messages. Japanese smartphone keypads have a feature that shows a list of emoticons, enabling users to insert emoticons simply by touching them. However, this list of emoticons contains more than 200, which is difficult to choose from, so a method to reorder the list and recommend appropriate emoticons to users is necessary. This paper proposes an emoticon recommendation method based on the emotive statements of users and their past selections of emoticons. The system is comprised of an affect analysis system and an original emoticon database: a table of 59 emoticons numerically categorized by 10 emotion types. The authors' experiments showed that 73.0% of chosen emoticons were among the top five recommended by the system, which is an improvement of 43.5% over the method used in current smartphones, which is based only on users' past emoticon selections.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/ijmdem.2014010102</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-8534
ispartof International journal of multimedia data engineering & management, 2014-01, Vol.5 (1), p.14-33
issn 1947-8534
1947-8542
language eng
recordid cdi_proquest_miscellaneous_1660011788
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Analysis
Computer mediated communication
Emotional icons
Emotions
Filtering systems
Instant messaging
Recommender systems
Smart phones
Smartphones
Social networks
title Emoticon Recommendation System to Richen Your Online Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emoticon%20Recommendation%20System%20to%20Richen%20Your%20Online%20Communication&rft.jtitle=International%20journal%20of%20multimedia%20data%20engineering%20&%20management&rft.au=Urabe,%20Yuki&rft.date=2014-01-01&rft.volume=5&rft.issue=1&rft.spage=14&rft.epage=33&rft.pages=14-33&rft.issn=1947-8534&rft.eissn=1947-8542&rft_id=info:doi/10.4018/ijmdem.2014010102&rft_dat=%3Cgale_proqu%3EA760575683%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932379829&rft_id=info:pmid/&rft_galeid=A760575683&rfr_iscdi=true