Composition of Nonanthocyanin Polyphenols in Alcoholic-Fermented Strawberry Products Using LC–MS (QTRAP), High-Resolution MS (UHPLC-Orbitrap-MS), LC-DAD, and Antioxidant Activity

In this study, the nonanthocyanin (poly)phenolic profile of an alcoholic-fermented strawberry beverage was characterized. High-performance liquid chromatography coupled with a triple-quadropole mass spectrometer and ultra-high-performance liquid chromatography coupled with a linear trap quadropole a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2015-02, Vol.63 (7), p.2041-2051
Hauptverfasser: Álvarez-Fernández, M. Antonia, Cerezo, Ana B, Cañete-Rodríguez, Ana M, Troncoso, Ana M, García-Parrilla, M. Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the nonanthocyanin (poly)phenolic profile of an alcoholic-fermented strawberry beverage was characterized. High-performance liquid chromatography coupled with a triple-quadropole mass spectrometer and ultra-high-performance liquid chromatography coupled with a linear trap quadropole and an Orbitrap mass analyzer was used to identify nonanthocyanin phenolic compounds. Sixty-six compounds were identified, and 13 of these were identified for the first time in strawberry or its derived alcoholic fermented beverage: protocatechuic acid-4-O-β-hexoside, brevifolin carboxylic acid, ferulic acid glucuronide, dimer caffeic acid-O-hexoside, luteolin-3′-O-xyloside, isorhamnetin 3-O-glucoside, taxifolin-O-glucoside, (+)-aromadendrin rhamnoside, eriodictyol-7-O-glucoside, (+)-taxifolin, (+)-aromadendrin, eriodictyol, and homovanillic acid. The alcoholic fermentation process produced significant increases in certain compounds, such as homovanillic acid and p-hydroxybenzoic acid, while a significant decrease in galloyl bis-HHDP-glucose was observed. Linear discriminant analysis correctly classified samples initial, final, and pasteurized, which led to the conclusion that alcoholic fermentation induces significant changes in composition, mainly in relation to the 19 compounds represented in the tables of this work.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf506076n