Impact of glufosinate-ammonium and bialaphos on the phytoplankton community of a small eutrophic northern lake
The impact of glufosinate‐ammonium and bialaphos on the phytoplankton community in a shallow eutrophic lake ecosystem was investigated using in situ enclosures. Flow cytometry was used to size phytoplankton cells and sort them as live or dead, depending upon their chlorophyll a autofluorescence inte...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and chemistry 1998-07, Vol.17 (7), p.1282-1290 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1290 |
---|---|
container_issue | 7 |
container_start_page | 1282 |
container_title | Environmental toxicology and chemistry |
container_volume | 17 |
creator | Faber, Marvin J. Thompson, Dean G. Stephenson, Gerald R. Boermans, Herman J. |
description | The impact of glufosinate‐ammonium and bialaphos on the phytoplankton community in a shallow eutrophic lake ecosystem was investigated using in situ enclosures. Flow cytometry was used to size phytoplankton cells and sort them as live or dead, depending upon their chlorophyll a autofluorescence intensity. Flow cytometric analyses provided significantly (p < 0.001) higher abundance estimates as compared to conventional microscopic analyses. At the highest treatment levels (10 mg/L), both herbicides caused a significant but transient reduction in live phytoplankton cells (days 3–14), which was particularly apparent in the small (1–2 and 2–3 μm) classes. Transient impacts on phytoplankton live cell abundances were mirrored by depression in dissolved oxygen content in the treated enclosures. At an application rate of 10 mg/L, abundance of smaller phytoplankton in the bialaphos‐treated enclosures recovered more rapidly (14 d) than those in the glufosinate‐ammonium–treated enclosures (49 d). For days of maximal impact, estimated median effect concentrations (EC50) for reduction of phytoplankton abundance ranged from 2.5 to 3.4 mg/L for glufosinate‐ammonium and 3.3 to 8.1 mg/L for bialaphos, whereas estimates of concentration inducing 20% reductions in abundance (EC20; 0.9–1.2 and 1.6–4 mg/L, respectively) more closely approximated the expected environmental concentration (1 mg/L), assuming direct overspray into water bodies of 15‐cm depth. |
doi_str_mv | 10.1002/etc.5620170713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16559805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14489345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3793-84fb5590ca0c39bb2b19bf8b1cb693b97f7938e169b3a448ca058191c68fc3193</originalsourceid><addsrcrecordid>eNqNkUFrHCEYhqU00G3aa88eSm-z0XF19FhCsw1dtgQSchS12rXr6FQd0v33ddmQ0FN6Ej6e9_n8eAH4gNESI9Rf2GqWlPUID2jA5BVYYEr7jjPMX4MFGgjqhp7xN-BtKb8QwkwIsQDxepyUqTA5-DPMLhUfVbWdGscU_TxCFX9A7VVQ0y4VmCKsOwun3aGmKai4r21i0jjO0dfDUaJgGVUI0M41p2nnDYwpt0yOMKi9fQfOnArFvn98z8Hd1Zfby6_d5vv6-vLzpjNkEKTjK6cpFcgoZIjQutdYaMc1NpoJosXgGsVtu0ETtVrxxlGOBTaMO0OwIOfg08k75fR7tqXK0RdjQ_uzTXORmDU9R_RlsNkFWf0HSBimA-UNXJ5Ak1Mp2To5ZT-qfJAYyWNRshUln4tqgY-PZlWMCi6raHx5SvWEHItsmDhhDz7YwwtS2ch_VnSnrC_V_nnKqryXbCADlffbtfzGN9ub7dVa3pC_gF60Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13615758</pqid></control><display><type>article</type><title>Impact of glufosinate-ammonium and bialaphos on the phytoplankton community of a small eutrophic northern lake</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Faber, Marvin J. ; Thompson, Dean G. ; Stephenson, Gerald R. ; Boermans, Herman J.</creator><creatorcontrib>Faber, Marvin J. ; Thompson, Dean G. ; Stephenson, Gerald R. ; Boermans, Herman J.</creatorcontrib><description>The impact of glufosinate‐ammonium and bialaphos on the phytoplankton community in a shallow eutrophic lake ecosystem was investigated using in situ enclosures. Flow cytometry was used to size phytoplankton cells and sort them as live or dead, depending upon their chlorophyll a autofluorescence intensity. Flow cytometric analyses provided significantly (p < 0.001) higher abundance estimates as compared to conventional microscopic analyses. At the highest treatment levels (10 mg/L), both herbicides caused a significant but transient reduction in live phytoplankton cells (days 3–14), which was particularly apparent in the small (1–2 and 2–3 μm) classes. Transient impacts on phytoplankton live cell abundances were mirrored by depression in dissolved oxygen content in the treated enclosures. At an application rate of 10 mg/L, abundance of smaller phytoplankton in the bialaphos‐treated enclosures recovered more rapidly (14 d) than those in the glufosinate‐ammonium–treated enclosures (49 d). For days of maximal impact, estimated median effect concentrations (EC50) for reduction of phytoplankton abundance ranged from 2.5 to 3.4 mg/L for glufosinate‐ammonium and 3.3 to 8.1 mg/L for bialaphos, whereas estimates of concentration inducing 20% reductions in abundance (EC20; 0.9–1.2 and 1.6–4 mg/L, respectively) more closely approximated the expected environmental concentration (1 mg/L), assuming direct overspray into water bodies of 15‐cm depth.</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.5620170713</identifier><identifier>CODEN: ETOCDK</identifier><language>eng</language><publisher>Hoboken: Wiley Periodicals, Inc</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Bialaphos ; Biological and medical sciences ; Ecotoxicology, biological effects of pollution ; Flow cytometry ; Fresh water environment ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Glufosinate-ammonium ; Phosphinothricin ; Phytoplankton</subject><ispartof>Environmental toxicology and chemistry, 1998-07, Vol.17 (7), p.1282-1290</ispartof><rights>Copyright © 1998 SETAC</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3793-84fb5590ca0c39bb2b19bf8b1cb693b97f7938e169b3a448ca058191c68fc3193</citedby><cites>FETCH-LOGICAL-c3793-84fb5590ca0c39bb2b19bf8b1cb693b97f7938e169b3a448ca058191c68fc3193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetc.5620170713$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetc.5620170713$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2331552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Faber, Marvin J.</creatorcontrib><creatorcontrib>Thompson, Dean G.</creatorcontrib><creatorcontrib>Stephenson, Gerald R.</creatorcontrib><creatorcontrib>Boermans, Herman J.</creatorcontrib><title>Impact of glufosinate-ammonium and bialaphos on the phytoplankton community of a small eutrophic northern lake</title><title>Environmental toxicology and chemistry</title><addtitle>Environmental Toxicology and Chemistry</addtitle><description>The impact of glufosinate‐ammonium and bialaphos on the phytoplankton community in a shallow eutrophic lake ecosystem was investigated using in situ enclosures. Flow cytometry was used to size phytoplankton cells and sort them as live or dead, depending upon their chlorophyll a autofluorescence intensity. Flow cytometric analyses provided significantly (p < 0.001) higher abundance estimates as compared to conventional microscopic analyses. At the highest treatment levels (10 mg/L), both herbicides caused a significant but transient reduction in live phytoplankton cells (days 3–14), which was particularly apparent in the small (1–2 and 2–3 μm) classes. Transient impacts on phytoplankton live cell abundances were mirrored by depression in dissolved oxygen content in the treated enclosures. At an application rate of 10 mg/L, abundance of smaller phytoplankton in the bialaphos‐treated enclosures recovered more rapidly (14 d) than those in the glufosinate‐ammonium–treated enclosures (49 d). For days of maximal impact, estimated median effect concentrations (EC50) for reduction of phytoplankton abundance ranged from 2.5 to 3.4 mg/L for glufosinate‐ammonium and 3.3 to 8.1 mg/L for bialaphos, whereas estimates of concentration inducing 20% reductions in abundance (EC20; 0.9–1.2 and 1.6–4 mg/L, respectively) more closely approximated the expected environmental concentration (1 mg/L), assuming direct overspray into water bodies of 15‐cm depth.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Bialaphos</subject><subject>Biological and medical sciences</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Flow cytometry</subject><subject>Fresh water environment</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glufosinate-ammonium</subject><subject>Phosphinothricin</subject><subject>Phytoplankton</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkUFrHCEYhqU00G3aa88eSm-z0XF19FhCsw1dtgQSchS12rXr6FQd0v33ddmQ0FN6Ej6e9_n8eAH4gNESI9Rf2GqWlPUID2jA5BVYYEr7jjPMX4MFGgjqhp7xN-BtKb8QwkwIsQDxepyUqTA5-DPMLhUfVbWdGscU_TxCFX9A7VVQ0y4VmCKsOwun3aGmKai4r21i0jjO0dfDUaJgGVUI0M41p2nnDYwpt0yOMKi9fQfOnArFvn98z8Hd1Zfby6_d5vv6-vLzpjNkEKTjK6cpFcgoZIjQutdYaMc1NpoJosXgGsVtu0ETtVrxxlGOBTaMO0OwIOfg08k75fR7tqXK0RdjQ_uzTXORmDU9R_RlsNkFWf0HSBimA-UNXJ5Ak1Mp2To5ZT-qfJAYyWNRshUln4tqgY-PZlWMCi6raHx5SvWEHItsmDhhDz7YwwtS2ch_VnSnrC_V_nnKqryXbCADlffbtfzGN9ub7dVa3pC_gF60Rg</recordid><startdate>199807</startdate><enddate>199807</enddate><creator>Faber, Marvin J.</creator><creator>Thompson, Dean G.</creator><creator>Stephenson, Gerald R.</creator><creator>Boermans, Herman J.</creator><general>Wiley Periodicals, Inc</general><general>SETAC</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SN</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>199807</creationdate><title>Impact of glufosinate-ammonium and bialaphos on the phytoplankton community of a small eutrophic northern lake</title><author>Faber, Marvin J. ; Thompson, Dean G. ; Stephenson, Gerald R. ; Boermans, Herman J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3793-84fb5590ca0c39bb2b19bf8b1cb693b97f7938e169b3a448ca058191c68fc3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Bialaphos</topic><topic>Biological and medical sciences</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Flow cytometry</topic><topic>Fresh water environment</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glufosinate-ammonium</topic><topic>Phosphinothricin</topic><topic>Phytoplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faber, Marvin J.</creatorcontrib><creatorcontrib>Thompson, Dean G.</creatorcontrib><creatorcontrib>Stephenson, Gerald R.</creatorcontrib><creatorcontrib>Boermans, Herman J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ecology Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faber, Marvin J.</au><au>Thompson, Dean G.</au><au>Stephenson, Gerald R.</au><au>Boermans, Herman J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of glufosinate-ammonium and bialaphos on the phytoplankton community of a small eutrophic northern lake</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environmental Toxicology and Chemistry</addtitle><date>1998-07</date><risdate>1998</risdate><volume>17</volume><issue>7</issue><spage>1282</spage><epage>1290</epage><pages>1282-1290</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><coden>ETOCDK</coden><abstract>The impact of glufosinate‐ammonium and bialaphos on the phytoplankton community in a shallow eutrophic lake ecosystem was investigated using in situ enclosures. Flow cytometry was used to size phytoplankton cells and sort them as live or dead, depending upon their chlorophyll a autofluorescence intensity. Flow cytometric analyses provided significantly (p < 0.001) higher abundance estimates as compared to conventional microscopic analyses. At the highest treatment levels (10 mg/L), both herbicides caused a significant but transient reduction in live phytoplankton cells (days 3–14), which was particularly apparent in the small (1–2 and 2–3 μm) classes. Transient impacts on phytoplankton live cell abundances were mirrored by depression in dissolved oxygen content in the treated enclosures. At an application rate of 10 mg/L, abundance of smaller phytoplankton in the bialaphos‐treated enclosures recovered more rapidly (14 d) than those in the glufosinate‐ammonium–treated enclosures (49 d). For days of maximal impact, estimated median effect concentrations (EC50) for reduction of phytoplankton abundance ranged from 2.5 to 3.4 mg/L for glufosinate‐ammonium and 3.3 to 8.1 mg/L for bialaphos, whereas estimates of concentration inducing 20% reductions in abundance (EC20; 0.9–1.2 and 1.6–4 mg/L, respectively) more closely approximated the expected environmental concentration (1 mg/L), assuming direct overspray into water bodies of 15‐cm depth.</abstract><cop>Hoboken</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/etc.5620170713</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7268 |
ispartof | Environmental toxicology and chemistry, 1998-07, Vol.17 (7), p.1282-1290 |
issn | 0730-7268 1552-8618 |
language | eng |
recordid | cdi_proquest_miscellaneous_16559805 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Animal, plant and microbial ecology Applied ecology Bialaphos Biological and medical sciences Ecotoxicology, biological effects of pollution Flow cytometry Fresh water environment Freshwater Fundamental and applied biological sciences. Psychology Glufosinate-ammonium Phosphinothricin Phytoplankton |
title | Impact of glufosinate-ammonium and bialaphos on the phytoplankton community of a small eutrophic northern lake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20glufosinate-ammonium%20and%20bialaphos%20on%20the%20phytoplankton%20community%20of%20a%20small%20eutrophic%20northern%20lake&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Faber,%20Marvin%20J.&rft.date=1998-07&rft.volume=17&rft.issue=7&rft.spage=1282&rft.epage=1290&rft.pages=1282-1290&rft.issn=0730-7268&rft.eissn=1552-8618&rft.coden=ETOCDK&rft_id=info:doi/10.1002/etc.5620170713&rft_dat=%3Cproquest_cross%3E14489345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13615758&rft_id=info:pmid/&rfr_iscdi=true |