State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles
State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentra...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-12, Vol.272, p.68-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | |
container_start_page | 68 |
container_title | Journal of power sources |
container_volume | 272 |
creator | Yang, Naixing Zhang, Xiongwen Li, Guojun |
description | State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentration in the electrode particles are simulated and dynamically updated by solving the solid phase diffusion equation. By integrating the Li concentration distribution function over the battery volume, the battery SOC is estimated according to the calculated amount of dischargeable Li in the particles. The capacity changes of a LiPFeO sub(4) battery during discharge are measured and calculated using this approach. The calculated capacities agree well with the measured capacities. The maximum difference is approximately 2.4%. The effects of operating temperature and current density on the Li concentration distribution during discharge are investigated. The Li concentration gradient in the particles increases as the operating temperature decreases or as the discharge rate increases. The capacity of dischargeable Li decreases approximately linearly by 52.2% as the operating temperature decreases from 25 [degrees]C to -20 [degrees]C, while it increases less than 3.5% when the operating temperature increases from 25 [degrees]C to 40 [degrees]C. |
doi_str_mv | 10.1016/j.jpowsour.2014.08.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1655733210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651437652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ee39a289bbd279431ba2d4338c71b34e2718c4eee077d17b95f0ca6c9c0e5c923</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EEqXwCygbJDYJfsSxs0QVL6kSC2BtOc6EOkrqYjsg-HqStnTNajSjc-9o5iJ0SXBGMClu2qzduK_gBp9RTPIMywzz_AjNiBQspYLzYzTDTMhUCM5O0VkILcaYEIFn6Ocl6gipa1Kz0v4dEgjR9jpat04a55POxpUd-mTqKx0jeAsh-bQ6iStIgu2Hbge75sDWNkRvq2E7t-stCR2Y6F0NyUb7aE0H4RydNLoLcLGvc_R2f_e6eEyXzw9Pi9tlalhJYwrASk1lWVU1FWXOSKVpnTMmjSAVy4EKIk0OAFiImoiq5A02ujClwcBNSdkcXe98N959DON9qrfBQNfpNbghKFJwLhijBP8HJTkTBZ9cix1qvAvBQ6M2fnyc_1YEqykX1aq_XNSUi8JSjbmMwqv9Dh2M7hqv18aGg5pKWRQll-wX9IWT1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651437652</pqid></control><display><type>article</type><title>State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yang, Naixing ; Zhang, Xiongwen ; Li, Guojun</creator><creatorcontrib>Yang, Naixing ; Zhang, Xiongwen ; Li, Guojun</creatorcontrib><description>State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentration in the electrode particles are simulated and dynamically updated by solving the solid phase diffusion equation. By integrating the Li concentration distribution function over the battery volume, the battery SOC is estimated according to the calculated amount of dischargeable Li in the particles. The capacity changes of a LiPFeO sub(4) battery during discharge are measured and calculated using this approach. The calculated capacities agree well with the measured capacities. The maximum difference is approximately 2.4%. The effects of operating temperature and current density on the Li concentration distribution during discharge are investigated. The Li concentration gradient in the particles increases as the operating temperature decreases or as the discharge rate increases. The capacity of dischargeable Li decreases approximately linearly by 52.2% as the operating temperature decreases from 25 [degrees]C to -20 [degrees]C, while it increases less than 3.5% when the operating temperature increases from 25 [degrees]C to 40 [degrees]C.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.08.054</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Applied sciences ; Computer simulation ; Current density ; Direct energy conversion and energy accumulation ; Discharge ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; Lithium-ion batteries ; Mathematical analysis ; Operating temperature</subject><ispartof>Journal of power sources, 2014-12, Vol.272, p.68-78</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ee39a289bbd279431ba2d4338c71b34e2718c4eee077d17b95f0ca6c9c0e5c923</citedby><cites>FETCH-LOGICAL-c392t-ee39a289bbd279431ba2d4338c71b34e2718c4eee077d17b95f0ca6c9c0e5c923</cites><orcidid>0000-0002-6549-9442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28866958$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Naixing</creatorcontrib><creatorcontrib>Zhang, Xiongwen</creatorcontrib><creatorcontrib>Li, Guojun</creatorcontrib><title>State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles</title><title>Journal of power sources</title><description>State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentration in the electrode particles are simulated and dynamically updated by solving the solid phase diffusion equation. By integrating the Li concentration distribution function over the battery volume, the battery SOC is estimated according to the calculated amount of dischargeable Li in the particles. The capacity changes of a LiPFeO sub(4) battery during discharge are measured and calculated using this approach. The calculated capacities agree well with the measured capacities. The maximum difference is approximately 2.4%. The effects of operating temperature and current density on the Li concentration distribution during discharge are investigated. The Li concentration gradient in the particles increases as the operating temperature decreases or as the discharge rate increases. The capacity of dischargeable Li decreases approximately linearly by 52.2% as the operating temperature decreases from 25 [degrees]C to -20 [degrees]C, while it increases less than 3.5% when the operating temperature increases from 25 [degrees]C to 40 [degrees]C.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Current density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Lithium-ion batteries</subject><subject>Mathematical analysis</subject><subject>Operating temperature</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EEqXwCygbJDYJfsSxs0QVL6kSC2BtOc6EOkrqYjsg-HqStnTNajSjc-9o5iJ0SXBGMClu2qzduK_gBp9RTPIMywzz_AjNiBQspYLzYzTDTMhUCM5O0VkILcaYEIFn6Ocl6gipa1Kz0v4dEgjR9jpat04a55POxpUd-mTqKx0jeAsh-bQ6iStIgu2Hbge75sDWNkRvq2E7t-stCR2Y6F0NyUb7aE0H4RydNLoLcLGvc_R2f_e6eEyXzw9Pi9tlalhJYwrASk1lWVU1FWXOSKVpnTMmjSAVy4EKIk0OAFiImoiq5A02ujClwcBNSdkcXe98N959DON9qrfBQNfpNbghKFJwLhijBP8HJTkTBZ9cix1qvAvBQ6M2fnyc_1YEqykX1aq_XNSUi8JSjbmMwqv9Dh2M7hqv18aGg5pKWRQll-wX9IWT1Q</recordid><startdate>20141225</startdate><enddate>20141225</enddate><creator>Yang, Naixing</creator><creator>Zhang, Xiongwen</creator><creator>Li, Guojun</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6549-9442</orcidid></search><sort><creationdate>20141225</creationdate><title>State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles</title><author>Yang, Naixing ; Zhang, Xiongwen ; Li, Guojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ee39a289bbd279431ba2d4338c71b34e2718c4eee077d17b95f0ca6c9c0e5c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Current density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Lithium-ion batteries</topic><topic>Mathematical analysis</topic><topic>Operating temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Naixing</creatorcontrib><creatorcontrib>Zhang, Xiongwen</creatorcontrib><creatorcontrib>Li, Guojun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Naixing</au><au>Zhang, Xiongwen</au><au>Li, Guojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles</atitle><jtitle>Journal of power sources</jtitle><date>2014-12-25</date><risdate>2014</risdate><volume>272</volume><spage>68</spage><epage>78</epage><pages>68-78</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentration in the electrode particles are simulated and dynamically updated by solving the solid phase diffusion equation. By integrating the Li concentration distribution function over the battery volume, the battery SOC is estimated according to the calculated amount of dischargeable Li in the particles. The capacity changes of a LiPFeO sub(4) battery during discharge are measured and calculated using this approach. The calculated capacities agree well with the measured capacities. The maximum difference is approximately 2.4%. The effects of operating temperature and current density on the Li concentration distribution during discharge are investigated. The Li concentration gradient in the particles increases as the operating temperature decreases or as the discharge rate increases. The capacity of dischargeable Li decreases approximately linearly by 52.2% as the operating temperature decreases from 25 [degrees]C to -20 [degrees]C, while it increases less than 3.5% when the operating temperature increases from 25 [degrees]C to 40 [degrees]C.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.jpowsour.2014.08.054</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6549-9442</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-12, Vol.272, p.68-78 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1655733210 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Computer simulation Current density Direct energy conversion and energy accumulation Discharge Electric batteries Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Exact sciences and technology Lithium-ion batteries Mathematical analysis Operating temperature |
title | State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-charge%20estimation%20for%20lithium%20ion%20batteries%20via%20the%20simulation%20of%20lithium%20distribution%20in%20the%20electrode%20particles&rft.jtitle=Journal%20of%20power%20sources&rft.au=Yang,%20Naixing&rft.date=2014-12-25&rft.volume=272&rft.spage=68&rft.epage=78&rft.pages=68-78&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.08.054&rft_dat=%3Cproquest_cross%3E1651437652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651437652&rft_id=info:pmid/&rfr_iscdi=true |