State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles

State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2014-12, Vol.272, p.68-78
Hauptverfasser: Yang, Naixing, Zhang, Xiongwen, Li, Guojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue
container_start_page 68
container_title Journal of power sources
container_volume 272
creator Yang, Naixing
Zhang, Xiongwen
Li, Guojun
description State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentration in the electrode particles are simulated and dynamically updated by solving the solid phase diffusion equation. By integrating the Li concentration distribution function over the battery volume, the battery SOC is estimated according to the calculated amount of dischargeable Li in the particles. The capacity changes of a LiPFeO sub(4) battery during discharge are measured and calculated using this approach. The calculated capacities agree well with the measured capacities. The maximum difference is approximately 2.4%. The effects of operating temperature and current density on the Li concentration distribution during discharge are investigated. The Li concentration gradient in the particles increases as the operating temperature decreases or as the discharge rate increases. The capacity of dischargeable Li decreases approximately linearly by 52.2% as the operating temperature decreases from 25 [degrees]C to -20 [degrees]C, while it increases less than 3.5% when the operating temperature increases from 25 [degrees]C to 40 [degrees]C.
doi_str_mv 10.1016/j.jpowsour.2014.08.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1655733210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651437652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ee39a289bbd279431ba2d4338c71b34e2718c4eee077d17b95f0ca6c9c0e5c923</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EEqXwCygbJDYJfsSxs0QVL6kSC2BtOc6EOkrqYjsg-HqStnTNajSjc-9o5iJ0SXBGMClu2qzduK_gBp9RTPIMywzz_AjNiBQspYLzYzTDTMhUCM5O0VkILcaYEIFn6Ocl6gipa1Kz0v4dEgjR9jpat04a55POxpUd-mTqKx0jeAsh-bQ6iStIgu2Hbge75sDWNkRvq2E7t-stCR2Y6F0NyUb7aE0H4RydNLoLcLGvc_R2f_e6eEyXzw9Pi9tlalhJYwrASk1lWVU1FWXOSKVpnTMmjSAVy4EKIk0OAFiImoiq5A02ujClwcBNSdkcXe98N959DON9qrfBQNfpNbghKFJwLhijBP8HJTkTBZ9cix1qvAvBQ6M2fnyc_1YEqykX1aq_XNSUi8JSjbmMwqv9Dh2M7hqv18aGg5pKWRQll-wX9IWT1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651437652</pqid></control><display><type>article</type><title>State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yang, Naixing ; Zhang, Xiongwen ; Li, Guojun</creator><creatorcontrib>Yang, Naixing ; Zhang, Xiongwen ; Li, Guojun</creatorcontrib><description>State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentration in the electrode particles are simulated and dynamically updated by solving the solid phase diffusion equation. By integrating the Li concentration distribution function over the battery volume, the battery SOC is estimated according to the calculated amount of dischargeable Li in the particles. The capacity changes of a LiPFeO sub(4) battery during discharge are measured and calculated using this approach. The calculated capacities agree well with the measured capacities. The maximum difference is approximately 2.4%. The effects of operating temperature and current density on the Li concentration distribution during discharge are investigated. The Li concentration gradient in the particles increases as the operating temperature decreases or as the discharge rate increases. The capacity of dischargeable Li decreases approximately linearly by 52.2% as the operating temperature decreases from 25 [degrees]C to -20 [degrees]C, while it increases less than 3.5% when the operating temperature increases from 25 [degrees]C to 40 [degrees]C.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.08.054</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Applied sciences ; Computer simulation ; Current density ; Direct energy conversion and energy accumulation ; Discharge ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; Lithium-ion batteries ; Mathematical analysis ; Operating temperature</subject><ispartof>Journal of power sources, 2014-12, Vol.272, p.68-78</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ee39a289bbd279431ba2d4338c71b34e2718c4eee077d17b95f0ca6c9c0e5c923</citedby><cites>FETCH-LOGICAL-c392t-ee39a289bbd279431ba2d4338c71b34e2718c4eee077d17b95f0ca6c9c0e5c923</cites><orcidid>0000-0002-6549-9442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28866958$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Naixing</creatorcontrib><creatorcontrib>Zhang, Xiongwen</creatorcontrib><creatorcontrib>Li, Guojun</creatorcontrib><title>State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles</title><title>Journal of power sources</title><description>State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentration in the electrode particles are simulated and dynamically updated by solving the solid phase diffusion equation. By integrating the Li concentration distribution function over the battery volume, the battery SOC is estimated according to the calculated amount of dischargeable Li in the particles. The capacity changes of a LiPFeO sub(4) battery during discharge are measured and calculated using this approach. The calculated capacities agree well with the measured capacities. The maximum difference is approximately 2.4%. The effects of operating temperature and current density on the Li concentration distribution during discharge are investigated. The Li concentration gradient in the particles increases as the operating temperature decreases or as the discharge rate increases. The capacity of dischargeable Li decreases approximately linearly by 52.2% as the operating temperature decreases from 25 [degrees]C to -20 [degrees]C, while it increases less than 3.5% when the operating temperature increases from 25 [degrees]C to 40 [degrees]C.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Current density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Lithium-ion batteries</subject><subject>Mathematical analysis</subject><subject>Operating temperature</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EEqXwCygbJDYJfsSxs0QVL6kSC2BtOc6EOkrqYjsg-HqStnTNajSjc-9o5iJ0SXBGMClu2qzduK_gBp9RTPIMywzz_AjNiBQspYLzYzTDTMhUCM5O0VkILcaYEIFn6Ocl6gipa1Kz0v4dEgjR9jpat04a55POxpUd-mTqKx0jeAsh-bQ6iStIgu2Hbge75sDWNkRvq2E7t-stCR2Y6F0NyUb7aE0H4RydNLoLcLGvc_R2f_e6eEyXzw9Pi9tlalhJYwrASk1lWVU1FWXOSKVpnTMmjSAVy4EKIk0OAFiImoiq5A02ujClwcBNSdkcXe98N959DON9qrfBQNfpNbghKFJwLhijBP8HJTkTBZ9cix1qvAvBQ6M2fnyc_1YEqykX1aq_XNSUi8JSjbmMwqv9Dh2M7hqv18aGg5pKWRQll-wX9IWT1Q</recordid><startdate>20141225</startdate><enddate>20141225</enddate><creator>Yang, Naixing</creator><creator>Zhang, Xiongwen</creator><creator>Li, Guojun</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6549-9442</orcidid></search><sort><creationdate>20141225</creationdate><title>State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles</title><author>Yang, Naixing ; Zhang, Xiongwen ; Li, Guojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ee39a289bbd279431ba2d4338c71b34e2718c4eee077d17b95f0ca6c9c0e5c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Current density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Lithium-ion batteries</topic><topic>Mathematical analysis</topic><topic>Operating temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Naixing</creatorcontrib><creatorcontrib>Zhang, Xiongwen</creatorcontrib><creatorcontrib>Li, Guojun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Naixing</au><au>Zhang, Xiongwen</au><au>Li, Guojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles</atitle><jtitle>Journal of power sources</jtitle><date>2014-12-25</date><risdate>2014</risdate><volume>272</volume><spage>68</spage><epage>78</epage><pages>68-78</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>State of charge (SOC) estimation is a key function of the battery management system for human-machine interactions and systems control. This study proposes a new approach for SOC estimation based on computing the amount of Lithium (Li) in the electrode particles. The distribution of the Li concentration in the electrode particles are simulated and dynamically updated by solving the solid phase diffusion equation. By integrating the Li concentration distribution function over the battery volume, the battery SOC is estimated according to the calculated amount of dischargeable Li in the particles. The capacity changes of a LiPFeO sub(4) battery during discharge are measured and calculated using this approach. The calculated capacities agree well with the measured capacities. The maximum difference is approximately 2.4%. The effects of operating temperature and current density on the Li concentration distribution during discharge are investigated. The Li concentration gradient in the particles increases as the operating temperature decreases or as the discharge rate increases. The capacity of dischargeable Li decreases approximately linearly by 52.2% as the operating temperature decreases from 25 [degrees]C to -20 [degrees]C, while it increases less than 3.5% when the operating temperature increases from 25 [degrees]C to 40 [degrees]C.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.jpowsour.2014.08.054</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6549-9442</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-12, Vol.272, p.68-78
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1655733210
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Computer simulation
Current density
Direct energy conversion and energy accumulation
Discharge
Electric batteries
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Exact sciences and technology
Lithium-ion batteries
Mathematical analysis
Operating temperature
title State-of-charge estimation for lithium ion batteries via the simulation of lithium distribution in the electrode particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-charge%20estimation%20for%20lithium%20ion%20batteries%20via%20the%20simulation%20of%20lithium%20distribution%20in%20the%20electrode%20particles&rft.jtitle=Journal%20of%20power%20sources&rft.au=Yang,%20Naixing&rft.date=2014-12-25&rft.volume=272&rft.spage=68&rft.epage=78&rft.pages=68-78&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.08.054&rft_dat=%3Cproquest_cross%3E1651437652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651437652&rft_id=info:pmid/&rfr_iscdi=true