Quantifying ecological memory in plant and ecosystem processes

The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2015-03, Vol.18 (3), p.221-235
Hauptverfasser: Ogle, Kiona, Barber, Jarrett J., Barron-Gafford, Greg A., Bentley, Lisa Patrick, Young, Jessica M., Huxman, Travis E., Loik, Michael E., Tissue, David T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 3
container_start_page 221
container_title Ecology letters
container_volume 18
creator Ogle, Kiona
Barber, Jarrett J.
Barron-Gafford, Greg A.
Bentley, Lisa Patrick
Young, Jessica M.
Huxman, Travis E.
Loik, Michael E.
Tissue, David T.
description The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research.
doi_str_mv 10.1111/ele.12399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1655522003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1655522003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4859-64dcecef54047deebc593fd4270d58f48460ab1d4ccf83ef738bbc70cc27c42b3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRrFYXvoAE3Ogi7VwzyUaQUqtQlIpicTMkkzMlNZeaadC8vVN7WQg6mzMw3_nmnB-hM4J7xJ0-5NAjlEXRHjoiPCA-pjzc393ZtIOOrZ1jTGgkySHqUCEolTI8QteTJi6XmWmzcuaBrvJqluk49wooqrr1stJb5A7w4jJdPdvWLqHwFnWlwVqwJ-jAxLmF003topfb4fPgzh8_ju4HN2Nf81BEfsBTDRqM4JjLFCDRImIm5VTiVISGhzzAcUJSrrUJGRjJwiTREmtNpeY0YV10ufa6nz8asEtVZFZD7maDqrGKBGK1EsbMoRe_0HnV1KWbTjEcCMoZJeI_yrm4FBQH1FFXa0rXlbU1GLWosyKuW0WwWkWvXPTqJ3rHnm-MTVJAuiO3WTugvwY-sxzav01qOB5ulf66I3Opf-064vpdBZJJoV4fRmoylYM3OnpSAfsGcfybaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654752062</pqid></control><display><type>article</type><title>Quantifying ecological memory in plant and ecosystem processes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ogle, Kiona ; Barber, Jarrett J. ; Barron-Gafford, Greg A. ; Bentley, Lisa Patrick ; Young, Jessica M. ; Huxman, Travis E. ; Loik, Michael E. ; Tissue, David T.</creator><contributor>Cleland, Elsa</contributor><creatorcontrib>Ogle, Kiona ; Barber, Jarrett J. ; Barron-Gafford, Greg A. ; Bentley, Lisa Patrick ; Young, Jessica M. ; Huxman, Travis E. ; Loik, Michael E. ; Tissue, David T. ; Cleland, Elsa</creatorcontrib><description>The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.12399</identifier><identifier>PMID: 25522778</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Antecedent conditions ; Bayes Theorem ; Ecological and Environmental Phenomena ; Ecologists ; Ecology ; Ecosystem ; Ecosystems ; hierarchical Bayesian model ; lag effects ; legacy effects ; Models, Biological ; Models, Statistical ; net primary production ; Soil ; soil respiration ; Stochastic Processes ; Stomata ; Stomatal conductance ; Time ; time-series ; tree growth ; tree rings ; Trees</subject><ispartof>Ecology letters, 2015-03, Vol.18 (3), p.221-235</ispartof><rights>2014 John Wiley &amp; Sons Ltd/CNRS</rights><rights>2014 John Wiley &amp; Sons Ltd/CNRS.</rights><rights>Copyright © 2015 John Wiley &amp; Sons Ltd/CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4859-64dcecef54047deebc593fd4270d58f48460ab1d4ccf83ef738bbc70cc27c42b3</citedby><cites>FETCH-LOGICAL-c4859-64dcecef54047deebc593fd4270d58f48460ab1d4ccf83ef738bbc70cc27c42b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fele.12399$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fele.12399$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25522778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cleland, Elsa</contributor><creatorcontrib>Ogle, Kiona</creatorcontrib><creatorcontrib>Barber, Jarrett J.</creatorcontrib><creatorcontrib>Barron-Gafford, Greg A.</creatorcontrib><creatorcontrib>Bentley, Lisa Patrick</creatorcontrib><creatorcontrib>Young, Jessica M.</creatorcontrib><creatorcontrib>Huxman, Travis E.</creatorcontrib><creatorcontrib>Loik, Michael E.</creatorcontrib><creatorcontrib>Tissue, David T.</creatorcontrib><title>Quantifying ecological memory in plant and ecosystem processes</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research.</description><subject>Antecedent conditions</subject><subject>Bayes Theorem</subject><subject>Ecological and Environmental Phenomena</subject><subject>Ecologists</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>hierarchical Bayesian model</subject><subject>lag effects</subject><subject>legacy effects</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>net primary production</subject><subject>Soil</subject><subject>soil respiration</subject><subject>Stochastic Processes</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Time</subject><subject>time-series</subject><subject>tree growth</subject><subject>tree rings</subject><subject>Trees</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKw0AUhgdRrFYXvoAE3Ogi7VwzyUaQUqtQlIpicTMkkzMlNZeaadC8vVN7WQg6mzMw3_nmnB-hM4J7xJ0-5NAjlEXRHjoiPCA-pjzc393ZtIOOrZ1jTGgkySHqUCEolTI8QteTJi6XmWmzcuaBrvJqluk49wooqrr1stJb5A7w4jJdPdvWLqHwFnWlwVqwJ-jAxLmF003topfb4fPgzh8_ju4HN2Nf81BEfsBTDRqM4JjLFCDRImIm5VTiVISGhzzAcUJSrrUJGRjJwiTREmtNpeY0YV10ufa6nz8asEtVZFZD7maDqrGKBGK1EsbMoRe_0HnV1KWbTjEcCMoZJeI_yrm4FBQH1FFXa0rXlbU1GLWosyKuW0WwWkWvXPTqJ3rHnm-MTVJAuiO3WTugvwY-sxzav01qOB5ulf66I3Opf-064vpdBZJJoV4fRmoylYM3OnpSAfsGcfybaQ</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Ogle, Kiona</creator><creator>Barber, Jarrett J.</creator><creator>Barron-Gafford, Greg A.</creator><creator>Bentley, Lisa Patrick</creator><creator>Young, Jessica M.</creator><creator>Huxman, Travis E.</creator><creator>Loik, Michael E.</creator><creator>Tissue, David T.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>Quantifying ecological memory in plant and ecosystem processes</title><author>Ogle, Kiona ; Barber, Jarrett J. ; Barron-Gafford, Greg A. ; Bentley, Lisa Patrick ; Young, Jessica M. ; Huxman, Travis E. ; Loik, Michael E. ; Tissue, David T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4859-64dcecef54047deebc593fd4270d58f48460ab1d4ccf83ef738bbc70cc27c42b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antecedent conditions</topic><topic>Bayes Theorem</topic><topic>Ecological and Environmental Phenomena</topic><topic>Ecologists</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>hierarchical Bayesian model</topic><topic>lag effects</topic><topic>legacy effects</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>net primary production</topic><topic>Soil</topic><topic>soil respiration</topic><topic>Stochastic Processes</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Time</topic><topic>time-series</topic><topic>tree growth</topic><topic>tree rings</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogle, Kiona</creatorcontrib><creatorcontrib>Barber, Jarrett J.</creatorcontrib><creatorcontrib>Barron-Gafford, Greg A.</creatorcontrib><creatorcontrib>Bentley, Lisa Patrick</creatorcontrib><creatorcontrib>Young, Jessica M.</creatorcontrib><creatorcontrib>Huxman, Travis E.</creatorcontrib><creatorcontrib>Loik, Michael E.</creatorcontrib><creatorcontrib>Tissue, David T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogle, Kiona</au><au>Barber, Jarrett J.</au><au>Barron-Gafford, Greg A.</au><au>Bentley, Lisa Patrick</au><au>Young, Jessica M.</au><au>Huxman, Travis E.</au><au>Loik, Michael E.</au><au>Tissue, David T.</au><au>Cleland, Elsa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying ecological memory in plant and ecosystem processes</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2015-03</date><risdate>2015</risdate><volume>18</volume><issue>3</issue><spage>221</spage><epage>235</epage><pages>221-235</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18–28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time‐series data and facilitating new hypothesis generation and additional research.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25522778</pmid><doi>10.1111/ele.12399</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1461-023X
ispartof Ecology letters, 2015-03, Vol.18 (3), p.221-235
issn 1461-023X
1461-0248
language eng
recordid cdi_proquest_miscellaneous_1655522003
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Antecedent conditions
Bayes Theorem
Ecological and Environmental Phenomena
Ecologists
Ecology
Ecosystem
Ecosystems
hierarchical Bayesian model
lag effects
legacy effects
Models, Biological
Models, Statistical
net primary production
Soil
soil respiration
Stochastic Processes
Stomata
Stomatal conductance
Time
time-series
tree growth
tree rings
Trees
title Quantifying ecological memory in plant and ecosystem processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20ecological%20memory%20in%20plant%20and%20ecosystem%20processes&rft.jtitle=Ecology%20letters&rft.au=Ogle,%20Kiona&rft.date=2015-03&rft.volume=18&rft.issue=3&rft.spage=221&rft.epage=235&rft.pages=221-235&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.12399&rft_dat=%3Cproquest_cross%3E1655522003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654752062&rft_id=info:pmid/25522778&rfr_iscdi=true