A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA

Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases. Gelonin, pokeweed antiviral protein, and ricin,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-07, Vol.273 (27), p.17216-17220
Hauptverfasser: Nicolas, E, Beggs, J M, Haltiwanger, B M, Taraschi, T F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17220
container_issue 27
container_start_page 17216
container_title The Journal of biological chemistry
container_volume 273
creator Nicolas, E
Beggs, J M
Haltiwanger, B M
Taraschi, T F
description Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases. Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function of these plant proteins and to their toxicity to animal cells remains to be determined.
doi_str_mv 10.1074/jbc.273.27.17216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16550531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16550531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-8df5e459202412fd24378d75fcd6ced43f68c39c8e29091e54237ce48fccc0733</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMotVbvXoQcxNu2-dyP41K1CqUerOAtbJNJG9nurpstZf97U1sEA0Mm83vzIA-hW0rGlCRi8rXSY5bwUGOaMBqfoSElKY-4pJ_naEgIo1HGZHqJrrz_IuGIjA7QIIsFYxkdoibHC9jjaVl4j2uLHxc5npW9rn0fRjDJm13rKqdD07du68zhged9YB4vN0WHc93husLvDWhnA8sNVK4K1IWhq9YlRL5ri8qAObhfowtblB5uTvcIfTw_Lacv0fxt9jrN55HmWdxFqbEShMwYYYIya5jgSWoSabWJNRjBbZwGpU6BZSSjIAXjiQaRWq01STgfoYejb9PW3zvwndo6r6EsiwrqnVc0lpJIToOQHIW6rb1vwaomfLRoe0WJOoSsQsgqhBxK_YYcVu5O3rvVFszfwinVwO-PfOPWm71rQa1crTew_W_zAzBigyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16550531</pqid></control><display><type>article</type><title>A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nicolas, E ; Beggs, J M ; Haltiwanger, B M ; Taraschi, T F</creator><creatorcontrib>Nicolas, E ; Beggs, J M ; Haltiwanger, B M ; Taraschi, T F</creatorcontrib><description>Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases. Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function of these plant proteins and to their toxicity to animal cells remains to be determined.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.273.27.17216</identifier><identifier>PMID: 9642291</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Adenine - metabolism ; Base Sequence ; Carbon-Oxygen Lyases - metabolism ; Deoxyribonuclease IV (Phage T4-Induced) ; DNA Glycosylases ; DNA, Single-Stranded - metabolism ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; Hydrolysis ; N-Glycosyl Hydrolases - metabolism ; Oligodeoxyribonucleotides ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 1998-07, Vol.273 (27), p.17216-17220</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-8df5e459202412fd24378d75fcd6ced43f68c39c8e29091e54237ce48fccc0733</citedby><cites>FETCH-LOGICAL-c396t-8df5e459202412fd24378d75fcd6ced43f68c39c8e29091e54237ce48fccc0733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9642291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicolas, E</creatorcontrib><creatorcontrib>Beggs, J M</creatorcontrib><creatorcontrib>Haltiwanger, B M</creatorcontrib><creatorcontrib>Taraschi, T F</creatorcontrib><title>A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases. Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function of these plant proteins and to their toxicity to animal cells remains to be determined.</description><subject>Adenine - metabolism</subject><subject>Base Sequence</subject><subject>Carbon-Oxygen Lyases - metabolism</subject><subject>Deoxyribonuclease IV (Phage T4-Induced)</subject><subject>DNA Glycosylases</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>Hydrolysis</subject><subject>N-Glycosyl Hydrolases - metabolism</subject><subject>Oligodeoxyribonucleotides</subject><subject>Substrate Specificity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LAzEQxYMotVbvXoQcxNu2-dyP41K1CqUerOAtbJNJG9nurpstZf97U1sEA0Mm83vzIA-hW0rGlCRi8rXSY5bwUGOaMBqfoSElKY-4pJ_naEgIo1HGZHqJrrz_IuGIjA7QIIsFYxkdoibHC9jjaVl4j2uLHxc5npW9rn0fRjDJm13rKqdD07du68zhged9YB4vN0WHc93husLvDWhnA8sNVK4K1IWhq9YlRL5ri8qAObhfowtblB5uTvcIfTw_Lacv0fxt9jrN55HmWdxFqbEShMwYYYIya5jgSWoSabWJNRjBbZwGpU6BZSSjIAXjiQaRWq01STgfoYejb9PW3zvwndo6r6EsiwrqnVc0lpJIToOQHIW6rb1vwaomfLRoe0WJOoSsQsgqhBxK_YYcVu5O3rvVFszfwinVwO-PfOPWm71rQa1crTew_W_zAzBigyo</recordid><startdate>19980703</startdate><enddate>19980703</enddate><creator>Nicolas, E</creator><creator>Beggs, J M</creator><creator>Haltiwanger, B M</creator><creator>Taraschi, T F</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>19980703</creationdate><title>A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA</title><author>Nicolas, E ; Beggs, J M ; Haltiwanger, B M ; Taraschi, T F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-8df5e459202412fd24378d75fcd6ced43f68c39c8e29091e54237ce48fccc0733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adenine - metabolism</topic><topic>Base Sequence</topic><topic>Carbon-Oxygen Lyases - metabolism</topic><topic>Deoxyribonuclease IV (Phage T4-Induced)</topic><topic>DNA Glycosylases</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>Hydrolysis</topic><topic>N-Glycosyl Hydrolases - metabolism</topic><topic>Oligodeoxyribonucleotides</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolas, E</creatorcontrib><creatorcontrib>Beggs, J M</creatorcontrib><creatorcontrib>Haltiwanger, B M</creatorcontrib><creatorcontrib>Taraschi, T F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolas, E</au><au>Beggs, J M</au><au>Haltiwanger, B M</au><au>Taraschi, T F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1998-07-03</date><risdate>1998</risdate><volume>273</volume><issue>27</issue><spage>17216</spage><epage>17220</epage><pages>17216-17220</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases. Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function of these plant proteins and to their toxicity to animal cells remains to be determined.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>9642291</pmid><doi>10.1074/jbc.273.27.17216</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1998-07, Vol.273 (27), p.17216-17220
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_16550531
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adenine - metabolism
Base Sequence
Carbon-Oxygen Lyases - metabolism
Deoxyribonuclease IV (Phage T4-Induced)
DNA Glycosylases
DNA, Single-Stranded - metabolism
DNA-(Apurinic or Apyrimidinic Site) Lyase
Hydrolysis
N-Glycosyl Hydrolases - metabolism
Oligodeoxyribonucleotides
Substrate Specificity
title A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Class%20of%20DNA%20Glycosylase/Apurinic/Apyrimidinic%20Lyases%20That%20Act%20on%20Specific%20Adenines%20in%20Single-stranded%20DNA&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Nicolas,%20E&rft.date=1998-07-03&rft.volume=273&rft.issue=27&rft.spage=17216&rft.epage=17220&rft.pages=17216-17220&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.273.27.17216&rft_dat=%3Cproquest_cross%3E16550531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16550531&rft_id=info:pmid/9642291&rfr_iscdi=true