A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA
Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases. Gelonin, pokeweed antiviral protein, and ricin,...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1998-07, Vol.273 (27), p.17216-17220 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17220 |
---|---|
container_issue | 27 |
container_start_page | 17216 |
container_title | The Journal of biological chemistry |
container_volume | 273 |
creator | Nicolas, E Beggs, J M Haltiwanger, B M Taraschi, T F |
description | Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic
bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases.
Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage
single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an
oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of
DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that
a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected
to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function
of these plant proteins and to their toxicity to animal cells remains to be determined. |
doi_str_mv | 10.1074/jbc.273.27.17216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16550531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16550531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-8df5e459202412fd24378d75fcd6ced43f68c39c8e29091e54237ce48fccc0733</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMotVbvXoQcxNu2-dyP41K1CqUerOAtbJNJG9nurpstZf97U1sEA0Mm83vzIA-hW0rGlCRi8rXSY5bwUGOaMBqfoSElKY-4pJ_naEgIo1HGZHqJrrz_IuGIjA7QIIsFYxkdoibHC9jjaVl4j2uLHxc5npW9rn0fRjDJm13rKqdD07du68zhged9YB4vN0WHc93husLvDWhnA8sNVK4K1IWhq9YlRL5ri8qAObhfowtblB5uTvcIfTw_Lacv0fxt9jrN55HmWdxFqbEShMwYYYIya5jgSWoSabWJNRjBbZwGpU6BZSSjIAXjiQaRWq01STgfoYejb9PW3zvwndo6r6EsiwrqnVc0lpJIToOQHIW6rb1vwaomfLRoe0WJOoSsQsgqhBxK_YYcVu5O3rvVFszfwinVwO-PfOPWm71rQa1crTew_W_zAzBigyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16550531</pqid></control><display><type>article</type><title>A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nicolas, E ; Beggs, J M ; Haltiwanger, B M ; Taraschi, T F</creator><creatorcontrib>Nicolas, E ; Beggs, J M ; Haltiwanger, B M ; Taraschi, T F</creatorcontrib><description>Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic
bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases.
Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage
single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an
oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of
DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that
a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected
to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function
of these plant proteins and to their toxicity to animal cells remains to be determined.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.273.27.17216</identifier><identifier>PMID: 9642291</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Adenine - metabolism ; Base Sequence ; Carbon-Oxygen Lyases - metabolism ; Deoxyribonuclease IV (Phage T4-Induced) ; DNA Glycosylases ; DNA, Single-Stranded - metabolism ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; Hydrolysis ; N-Glycosyl Hydrolases - metabolism ; Oligodeoxyribonucleotides ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 1998-07, Vol.273 (27), p.17216-17220</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-8df5e459202412fd24378d75fcd6ced43f68c39c8e29091e54237ce48fccc0733</citedby><cites>FETCH-LOGICAL-c396t-8df5e459202412fd24378d75fcd6ced43f68c39c8e29091e54237ce48fccc0733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9642291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicolas, E</creatorcontrib><creatorcontrib>Beggs, J M</creatorcontrib><creatorcontrib>Haltiwanger, B M</creatorcontrib><creatorcontrib>Taraschi, T F</creatorcontrib><title>A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic
bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases.
Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage
single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an
oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of
DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that
a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected
to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function
of these plant proteins and to their toxicity to animal cells remains to be determined.</description><subject>Adenine - metabolism</subject><subject>Base Sequence</subject><subject>Carbon-Oxygen Lyases - metabolism</subject><subject>Deoxyribonuclease IV (Phage T4-Induced)</subject><subject>DNA Glycosylases</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>Hydrolysis</subject><subject>N-Glycosyl Hydrolases - metabolism</subject><subject>Oligodeoxyribonucleotides</subject><subject>Substrate Specificity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LAzEQxYMotVbvXoQcxNu2-dyP41K1CqUerOAtbJNJG9nurpstZf97U1sEA0Mm83vzIA-hW0rGlCRi8rXSY5bwUGOaMBqfoSElKY-4pJ_naEgIo1HGZHqJrrz_IuGIjA7QIIsFYxkdoibHC9jjaVl4j2uLHxc5npW9rn0fRjDJm13rKqdD07du68zhged9YB4vN0WHc93husLvDWhnA8sNVK4K1IWhq9YlRL5ri8qAObhfowtblB5uTvcIfTw_Lacv0fxt9jrN55HmWdxFqbEShMwYYYIya5jgSWoSabWJNRjBbZwGpU6BZSSjIAXjiQaRWq01STgfoYejb9PW3zvwndo6r6EsiwrqnVc0lpJIToOQHIW6rb1vwaomfLRoe0WJOoSsQsgqhBxK_YYcVu5O3rvVFszfwinVwO-PfOPWm71rQa1crTew_W_zAzBigyo</recordid><startdate>19980703</startdate><enddate>19980703</enddate><creator>Nicolas, E</creator><creator>Beggs, J M</creator><creator>Haltiwanger, B M</creator><creator>Taraschi, T F</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>19980703</creationdate><title>A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA</title><author>Nicolas, E ; Beggs, J M ; Haltiwanger, B M ; Taraschi, T F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-8df5e459202412fd24378d75fcd6ced43f68c39c8e29091e54237ce48fccc0733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adenine - metabolism</topic><topic>Base Sequence</topic><topic>Carbon-Oxygen Lyases - metabolism</topic><topic>Deoxyribonuclease IV (Phage T4-Induced)</topic><topic>DNA Glycosylases</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>Hydrolysis</topic><topic>N-Glycosyl Hydrolases - metabolism</topic><topic>Oligodeoxyribonucleotides</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolas, E</creatorcontrib><creatorcontrib>Beggs, J M</creatorcontrib><creatorcontrib>Haltiwanger, B M</creatorcontrib><creatorcontrib>Taraschi, T F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolas, E</au><au>Beggs, J M</au><au>Haltiwanger, B M</au><au>Taraschi, T F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1998-07-03</date><risdate>1998</risdate><volume>273</volume><issue>27</issue><spage>17216</spage><epage>17220</epage><pages>17216-17220</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic
bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases.
Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage
single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an
oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of
DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that
a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected
to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function
of these plant proteins and to their toxicity to animal cells remains to be determined.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>9642291</pmid><doi>10.1074/jbc.273.27.17216</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1998-07, Vol.273 (27), p.17216-17220 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_16550531 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adenine - metabolism Base Sequence Carbon-Oxygen Lyases - metabolism Deoxyribonuclease IV (Phage T4-Induced) DNA Glycosylases DNA, Single-Stranded - metabolism DNA-(Apurinic or Apyrimidinic Site) Lyase Hydrolysis N-Glycosyl Hydrolases - metabolism Oligodeoxyribonucleotides Substrate Specificity |
title | A New Class of DNA Glycosylase/Apurinic/Apyrimidinic Lyases That Act on Specific Adenines in Single-stranded DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Class%20of%20DNA%20Glycosylase/Apurinic/Apyrimidinic%20Lyases%20That%20Act%20on%20Specific%20Adenines%20in%20Single-stranded%20DNA&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Nicolas,%20E&rft.date=1998-07-03&rft.volume=273&rft.issue=27&rft.spage=17216&rft.epage=17220&rft.pages=17216-17220&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.273.27.17216&rft_dat=%3Cproquest_cross%3E16550531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16550531&rft_id=info:pmid/9642291&rfr_iscdi=true |