Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2–ARE pathways in cell models of spinocerebellar ataxia 3

Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17 and dentatorubropallidoluysian atrophy, as well as Huntington disease, are a group of neurodegenerative disorders caused by a CAG triplet-repeat expansion encoding a long polyglutamine (polyQ) tract in the respective mutant proteins. The cytop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2014-06, Vol.71, p.339-350
Hauptverfasser: Chen, Chiung-Mei, Weng, Yu-Ting, Chen, Wan-Ling, Lin, Te-Hsien, Chao, Chih-Ying, Lin, Chih-Hsin, Chen, I-Cheng, Lee, Li-Ching, Lin, Hsuan-Yuan, Wu, Yih-Ru, Chen, Yi-Chun, Chang, Kuo-Hsuan, Tang, Hsiang-Yu, Cheng, Mei-Ling, Lee-Chen, Guey-Jen, Lin, Jung-Yaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue
container_start_page 339
container_title Free radical biology & medicine
container_volume 71
creator Chen, Chiung-Mei
Weng, Yu-Ting
Chen, Wan-Ling
Lin, Te-Hsien
Chao, Chih-Ying
Lin, Chih-Hsin
Chen, I-Cheng
Lee, Li-Ching
Lin, Hsuan-Yuan
Wu, Yih-Ru
Chen, Yi-Chun
Chang, Kuo-Hsuan
Tang, Hsiang-Yu
Cheng, Mei-Ling
Lee-Chen, Guey-Jen
Lin, Jung-Yaw
description Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17 and dentatorubropallidoluysian atrophy, as well as Huntington disease, are a group of neurodegenerative disorders caused by a CAG triplet-repeat expansion encoding a long polyglutamine (polyQ) tract in the respective mutant proteins. The cytoplasmic and nuclear aggregate formation, a pathological hallmark of polyQ diseases, is probably the initial process triggering the subsequent pathological events. Compromised oxidative stress defense capacity and mitochondrial dysfunction have emerged as contributing factors to the pathogenesis of polyQ diseases. The roots of licorice (Glycyrrhiza species) have long been used as an herbal medicine. In this study, we demonstrate the aggregate-inhibitory effect of Glycyrrhiza inflata herb extract and its constituents licochalcone A and ammonium glycyrrhizinate (AMGZ) in both 293 and SH-SY5Y ATXN3/Q75 cells, SCA3 cell models. The reporter assay showed that G. inflata herb extract, licochalcone A, and AMGZ could enhance the promoter activity of peroxisome proliferator-activated receptor γ, coactivator 1α (PPARGC1A), a known regulator of mitochondrial biogenesis and antioxidative response genes. G. inflata extract, licochalcone A, and AMGZ upregulated PPARGC1A expression and its downstream target genes, SOD2 and CYCS, in the 293 ATXN3/Q75 cell model. The expression of nuclear factor erythroid 2-related factor 2 (NFE2L2), the principal transcription factor that binds to antioxidant-responsive elements (AREs) to promote ARE-dependent gene expression when the cells respond to oxidative stress, and its downstream genes, HMOX1, NQO1, GCLC, and GSTP1, was also increased by G. inflata herb extract, licochalcone A, and AMGZ. Knockdown of PPARGC1A increased aggregates in ATXN3/Q75 cells and also attenuated the aggregate-inhibiting effect of the tested compounds. G. inflata extract and its constituents significantly elevated GSH/GSSG ratio and reduced reactive oxidative species in ATXN3/Q75 cells. The study results suggest that the tested agents activate PPARGC1A activity and NFE2L2–ARE signaling to increase mitochondrial biogenesis, decrease oxidative stress, and reduce aggregate formation in SCA3 cellular models. •We report antiaggregation potential of G. inflata and components in 293/SH-SY5Y SCA3 cells.•G. inflata and components upregulate PPARGC1A, a regulator of mitochondrial biogenesis.•G. inflata and components activate NFE2L2–ARE signaling and suppress GSSG and ROS.
doi_str_mv 10.1016/j.freeradbiomed.2014.03.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654692072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584914001403</els_id><sourcerecordid>1529843126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-4e00a56508d87f3fca339019b6a67d3782ec3e794bb0a518983fda4f05c343033</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EokvhFZAlLlwS_DdxxClabbdIK6gqOFuOM9n1KpsEO4GGE-_QE6_Hk-Bo2wMnOI1m_Jv5rO9D6A0lKSU0e3dMGw_gTV25_gR1yggVKeEpYfwJWlGV80TIInuKVkQVNJFKFBfoRQhHQoiQXD1HF0xkuWRMrtCv8usE_RQw3I3e2BH3Dd62s529P7gfBruuac241IOr3Biw2e897M3o-g5XM56G2E0Rcd0e39yUt9s1LbHpavzxasN27PfP-_J2gwczHr6bOcQ72ELb4lNfQxsWtTC4rrfgoYpz43FUu3MG85foWWPaAK8e6iX6crX5vL5Odp-2H9blLrGCZmMigBAjM0lUrfKGN9ZwXhBaVJnJ8prnioHlkBeiqiJHVaF4UxvREGm54ITzS_T2fHfwffQijPrkwvJH0y3GaJpJkRWM5OzfqGSFEpyyLKLvz6j1fQgeGj14dzJ-1pToJUZ91H_FqJcYNeE6xhi3Xz8ITdXy9rj7mFsENmcgmgjfHHgdrIPOQu082FHXvfsvoT_p97dj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529843126</pqid></control><display><type>article</type><title>Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2–ARE pathways in cell models of spinocerebellar ataxia 3</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Chiung-Mei ; Weng, Yu-Ting ; Chen, Wan-Ling ; Lin, Te-Hsien ; Chao, Chih-Ying ; Lin, Chih-Hsin ; Chen, I-Cheng ; Lee, Li-Ching ; Lin, Hsuan-Yuan ; Wu, Yih-Ru ; Chen, Yi-Chun ; Chang, Kuo-Hsuan ; Tang, Hsiang-Yu ; Cheng, Mei-Ling ; Lee-Chen, Guey-Jen ; Lin, Jung-Yaw</creator><creatorcontrib>Chen, Chiung-Mei ; Weng, Yu-Ting ; Chen, Wan-Ling ; Lin, Te-Hsien ; Chao, Chih-Ying ; Lin, Chih-Hsin ; Chen, I-Cheng ; Lee, Li-Ching ; Lin, Hsuan-Yuan ; Wu, Yih-Ru ; Chen, Yi-Chun ; Chang, Kuo-Hsuan ; Tang, Hsiang-Yu ; Cheng, Mei-Ling ; Lee-Chen, Guey-Jen ; Lin, Jung-Yaw</creatorcontrib><description>Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17 and dentatorubropallidoluysian atrophy, as well as Huntington disease, are a group of neurodegenerative disorders caused by a CAG triplet-repeat expansion encoding a long polyglutamine (polyQ) tract in the respective mutant proteins. The cytoplasmic and nuclear aggregate formation, a pathological hallmark of polyQ diseases, is probably the initial process triggering the subsequent pathological events. Compromised oxidative stress defense capacity and mitochondrial dysfunction have emerged as contributing factors to the pathogenesis of polyQ diseases. The roots of licorice (Glycyrrhiza species) have long been used as an herbal medicine. In this study, we demonstrate the aggregate-inhibitory effect of Glycyrrhiza inflata herb extract and its constituents licochalcone A and ammonium glycyrrhizinate (AMGZ) in both 293 and SH-SY5Y ATXN3/Q75 cells, SCA3 cell models. The reporter assay showed that G. inflata herb extract, licochalcone A, and AMGZ could enhance the promoter activity of peroxisome proliferator-activated receptor γ, coactivator 1α (PPARGC1A), a known regulator of mitochondrial biogenesis and antioxidative response genes. G. inflata extract, licochalcone A, and AMGZ upregulated PPARGC1A expression and its downstream target genes, SOD2 and CYCS, in the 293 ATXN3/Q75 cell model. The expression of nuclear factor erythroid 2-related factor 2 (NFE2L2), the principal transcription factor that binds to antioxidant-responsive elements (AREs) to promote ARE-dependent gene expression when the cells respond to oxidative stress, and its downstream genes, HMOX1, NQO1, GCLC, and GSTP1, was also increased by G. inflata herb extract, licochalcone A, and AMGZ. Knockdown of PPARGC1A increased aggregates in ATXN3/Q75 cells and also attenuated the aggregate-inhibiting effect of the tested compounds. G. inflata extract and its constituents significantly elevated GSH/GSSG ratio and reduced reactive oxidative species in ATXN3/Q75 cells. The study results suggest that the tested agents activate PPARGC1A activity and NFE2L2–ARE signaling to increase mitochondrial biogenesis, decrease oxidative stress, and reduce aggregate formation in SCA3 cellular models. •We report antiaggregation potential of G. inflata and components in 293/SH-SY5Y SCA3 cells.•G. inflata and components upregulate PPARGC1A, a regulator of mitochondrial biogenesis.•G. inflata and components activate NFE2L2–ARE signaling and suppress GSSG and ROS.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2014.03.023</identifier><identifier>PMID: 24675225</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ammonium glycyrrhizinate ; Antioxidant Response Elements ; ATXN3 ; Cell Line, Tumor ; Chalcones - pharmacology ; Free radicals ; Gene Expression Regulation ; Glutathione S-Transferase pi - genetics ; Glutathione S-Transferase pi - metabolism ; Glycyrrhiza ; Glycyrrhiza - chemistry ; Glycyrrhiza glabra ; Glycyrrhiza inflata ; Glycyrrhizic Acid - pharmacology ; HEK293 Cells ; Heme Oxygenase-1 - genetics ; Heme Oxygenase-1 - metabolism ; Humans ; Licochalcone A ; Machado-Joseph Disease - genetics ; Machado-Joseph Disease - metabolism ; Machado-Joseph Disease - pathology ; Mitochondrial biogenesis ; Models, Biological ; NAD(P)H Dehydrogenase (Quinone) - genetics ; NAD(P)H Dehydrogenase (Quinone) - metabolism ; Neurons ; NF-E2-Related Factor 2 - agonists ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; NFE2L2 ; Oxidative Stress ; Peptides - antagonists &amp; inhibitors ; Peptides - chemistry ; Peptides - metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Plant Extracts - chemistry ; Plant Extracts - isolation &amp; purification ; Plant Extracts - pharmacology ; Plant Roots - chemistry ; PPARGC1A ; Protein Aggregates ; Signal Transduction ; Spinocerebellar ataxia ; Superoxide Dismutase ; Transcription Factors - agonists ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Water</subject><ispartof>Free radical biology &amp; medicine, 2014-06, Vol.71, p.339-350</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-4e00a56508d87f3fca339019b6a67d3782ec3e794bb0a518983fda4f05c343033</citedby><cites>FETCH-LOGICAL-c416t-4e00a56508d87f3fca339019b6a67d3782ec3e794bb0a518983fda4f05c343033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0891584914001403$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24675225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chiung-Mei</creatorcontrib><creatorcontrib>Weng, Yu-Ting</creatorcontrib><creatorcontrib>Chen, Wan-Ling</creatorcontrib><creatorcontrib>Lin, Te-Hsien</creatorcontrib><creatorcontrib>Chao, Chih-Ying</creatorcontrib><creatorcontrib>Lin, Chih-Hsin</creatorcontrib><creatorcontrib>Chen, I-Cheng</creatorcontrib><creatorcontrib>Lee, Li-Ching</creatorcontrib><creatorcontrib>Lin, Hsuan-Yuan</creatorcontrib><creatorcontrib>Wu, Yih-Ru</creatorcontrib><creatorcontrib>Chen, Yi-Chun</creatorcontrib><creatorcontrib>Chang, Kuo-Hsuan</creatorcontrib><creatorcontrib>Tang, Hsiang-Yu</creatorcontrib><creatorcontrib>Cheng, Mei-Ling</creatorcontrib><creatorcontrib>Lee-Chen, Guey-Jen</creatorcontrib><creatorcontrib>Lin, Jung-Yaw</creatorcontrib><title>Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2–ARE pathways in cell models of spinocerebellar ataxia 3</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17 and dentatorubropallidoluysian atrophy, as well as Huntington disease, are a group of neurodegenerative disorders caused by a CAG triplet-repeat expansion encoding a long polyglutamine (polyQ) tract in the respective mutant proteins. The cytoplasmic and nuclear aggregate formation, a pathological hallmark of polyQ diseases, is probably the initial process triggering the subsequent pathological events. Compromised oxidative stress defense capacity and mitochondrial dysfunction have emerged as contributing factors to the pathogenesis of polyQ diseases. The roots of licorice (Glycyrrhiza species) have long been used as an herbal medicine. In this study, we demonstrate the aggregate-inhibitory effect of Glycyrrhiza inflata herb extract and its constituents licochalcone A and ammonium glycyrrhizinate (AMGZ) in both 293 and SH-SY5Y ATXN3/Q75 cells, SCA3 cell models. The reporter assay showed that G. inflata herb extract, licochalcone A, and AMGZ could enhance the promoter activity of peroxisome proliferator-activated receptor γ, coactivator 1α (PPARGC1A), a known regulator of mitochondrial biogenesis and antioxidative response genes. G. inflata extract, licochalcone A, and AMGZ upregulated PPARGC1A expression and its downstream target genes, SOD2 and CYCS, in the 293 ATXN3/Q75 cell model. The expression of nuclear factor erythroid 2-related factor 2 (NFE2L2), the principal transcription factor that binds to antioxidant-responsive elements (AREs) to promote ARE-dependent gene expression when the cells respond to oxidative stress, and its downstream genes, HMOX1, NQO1, GCLC, and GSTP1, was also increased by G. inflata herb extract, licochalcone A, and AMGZ. Knockdown of PPARGC1A increased aggregates in ATXN3/Q75 cells and also attenuated the aggregate-inhibiting effect of the tested compounds. G. inflata extract and its constituents significantly elevated GSH/GSSG ratio and reduced reactive oxidative species in ATXN3/Q75 cells. The study results suggest that the tested agents activate PPARGC1A activity and NFE2L2–ARE signaling to increase mitochondrial biogenesis, decrease oxidative stress, and reduce aggregate formation in SCA3 cellular models. •We report antiaggregation potential of G. inflata and components in 293/SH-SY5Y SCA3 cells.•G. inflata and components upregulate PPARGC1A, a regulator of mitochondrial biogenesis.•G. inflata and components activate NFE2L2–ARE signaling and suppress GSSG and ROS.</description><subject>Ammonium glycyrrhizinate</subject><subject>Antioxidant Response Elements</subject><subject>ATXN3</subject><subject>Cell Line, Tumor</subject><subject>Chalcones - pharmacology</subject><subject>Free radicals</subject><subject>Gene Expression Regulation</subject><subject>Glutathione S-Transferase pi - genetics</subject><subject>Glutathione S-Transferase pi - metabolism</subject><subject>Glycyrrhiza</subject><subject>Glycyrrhiza - chemistry</subject><subject>Glycyrrhiza glabra</subject><subject>Glycyrrhiza inflata</subject><subject>Glycyrrhizic Acid - pharmacology</subject><subject>HEK293 Cells</subject><subject>Heme Oxygenase-1 - genetics</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Humans</subject><subject>Licochalcone A</subject><subject>Machado-Joseph Disease - genetics</subject><subject>Machado-Joseph Disease - metabolism</subject><subject>Machado-Joseph Disease - pathology</subject><subject>Mitochondrial biogenesis</subject><subject>Models, Biological</subject><subject>NAD(P)H Dehydrogenase (Quinone) - genetics</subject><subject>NAD(P)H Dehydrogenase (Quinone) - metabolism</subject><subject>Neurons</subject><subject>NF-E2-Related Factor 2 - agonists</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>NFE2L2</subject><subject>Oxidative Stress</subject><subject>Peptides - antagonists &amp; inhibitors</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Extracts - isolation &amp; purification</subject><subject>Plant Extracts - pharmacology</subject><subject>Plant Roots - chemistry</subject><subject>PPARGC1A</subject><subject>Protein Aggregates</subject><subject>Signal Transduction</subject><subject>Spinocerebellar ataxia</subject><subject>Superoxide Dismutase</subject><subject>Transcription Factors - agonists</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Water</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxi0EokvhFZAlLlwS_DdxxClabbdIK6gqOFuOM9n1KpsEO4GGE-_QE6_Hk-Bo2wMnOI1m_Jv5rO9D6A0lKSU0e3dMGw_gTV25_gR1yggVKeEpYfwJWlGV80TIInuKVkQVNJFKFBfoRQhHQoiQXD1HF0xkuWRMrtCv8usE_RQw3I3e2BH3Dd62s529P7gfBruuac241IOr3Biw2e897M3o-g5XM56G2E0Rcd0e39yUt9s1LbHpavzxasN27PfP-_J2gwczHr6bOcQ72ELb4lNfQxsWtTC4rrfgoYpz43FUu3MG85foWWPaAK8e6iX6crX5vL5Odp-2H9blLrGCZmMigBAjM0lUrfKGN9ZwXhBaVJnJ8prnioHlkBeiqiJHVaF4UxvREGm54ITzS_T2fHfwffQijPrkwvJH0y3GaJpJkRWM5OzfqGSFEpyyLKLvz6j1fQgeGj14dzJ-1pToJUZ91H_FqJcYNeE6xhi3Xz8ITdXy9rj7mFsENmcgmgjfHHgdrIPOQu082FHXvfsvoT_p97dj</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Chen, Chiung-Mei</creator><creator>Weng, Yu-Ting</creator><creator>Chen, Wan-Ling</creator><creator>Lin, Te-Hsien</creator><creator>Chao, Chih-Ying</creator><creator>Lin, Chih-Hsin</creator><creator>Chen, I-Cheng</creator><creator>Lee, Li-Ching</creator><creator>Lin, Hsuan-Yuan</creator><creator>Wu, Yih-Ru</creator><creator>Chen, Yi-Chun</creator><creator>Chang, Kuo-Hsuan</creator><creator>Tang, Hsiang-Yu</creator><creator>Cheng, Mei-Ling</creator><creator>Lee-Chen, Guey-Jen</creator><creator>Lin, Jung-Yaw</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20140601</creationdate><title>Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2–ARE pathways in cell models of spinocerebellar ataxia 3</title><author>Chen, Chiung-Mei ; Weng, Yu-Ting ; Chen, Wan-Ling ; Lin, Te-Hsien ; Chao, Chih-Ying ; Lin, Chih-Hsin ; Chen, I-Cheng ; Lee, Li-Ching ; Lin, Hsuan-Yuan ; Wu, Yih-Ru ; Chen, Yi-Chun ; Chang, Kuo-Hsuan ; Tang, Hsiang-Yu ; Cheng, Mei-Ling ; Lee-Chen, Guey-Jen ; Lin, Jung-Yaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-4e00a56508d87f3fca339019b6a67d3782ec3e794bb0a518983fda4f05c343033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ammonium glycyrrhizinate</topic><topic>Antioxidant Response Elements</topic><topic>ATXN3</topic><topic>Cell Line, Tumor</topic><topic>Chalcones - pharmacology</topic><topic>Free radicals</topic><topic>Gene Expression Regulation</topic><topic>Glutathione S-Transferase pi - genetics</topic><topic>Glutathione S-Transferase pi - metabolism</topic><topic>Glycyrrhiza</topic><topic>Glycyrrhiza - chemistry</topic><topic>Glycyrrhiza glabra</topic><topic>Glycyrrhiza inflata</topic><topic>Glycyrrhizic Acid - pharmacology</topic><topic>HEK293 Cells</topic><topic>Heme Oxygenase-1 - genetics</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Humans</topic><topic>Licochalcone A</topic><topic>Machado-Joseph Disease - genetics</topic><topic>Machado-Joseph Disease - metabolism</topic><topic>Machado-Joseph Disease - pathology</topic><topic>Mitochondrial biogenesis</topic><topic>Models, Biological</topic><topic>NAD(P)H Dehydrogenase (Quinone) - genetics</topic><topic>NAD(P)H Dehydrogenase (Quinone) - metabolism</topic><topic>Neurons</topic><topic>NF-E2-Related Factor 2 - agonists</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>NFE2L2</topic><topic>Oxidative Stress</topic><topic>Peptides - antagonists &amp; inhibitors</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Extracts - isolation &amp; purification</topic><topic>Plant Extracts - pharmacology</topic><topic>Plant Roots - chemistry</topic><topic>PPARGC1A</topic><topic>Protein Aggregates</topic><topic>Signal Transduction</topic><topic>Spinocerebellar ataxia</topic><topic>Superoxide Dismutase</topic><topic>Transcription Factors - agonists</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chiung-Mei</creatorcontrib><creatorcontrib>Weng, Yu-Ting</creatorcontrib><creatorcontrib>Chen, Wan-Ling</creatorcontrib><creatorcontrib>Lin, Te-Hsien</creatorcontrib><creatorcontrib>Chao, Chih-Ying</creatorcontrib><creatorcontrib>Lin, Chih-Hsin</creatorcontrib><creatorcontrib>Chen, I-Cheng</creatorcontrib><creatorcontrib>Lee, Li-Ching</creatorcontrib><creatorcontrib>Lin, Hsuan-Yuan</creatorcontrib><creatorcontrib>Wu, Yih-Ru</creatorcontrib><creatorcontrib>Chen, Yi-Chun</creatorcontrib><creatorcontrib>Chang, Kuo-Hsuan</creatorcontrib><creatorcontrib>Tang, Hsiang-Yu</creatorcontrib><creatorcontrib>Cheng, Mei-Ling</creatorcontrib><creatorcontrib>Lee-Chen, Guey-Jen</creatorcontrib><creatorcontrib>Lin, Jung-Yaw</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chiung-Mei</au><au>Weng, Yu-Ting</au><au>Chen, Wan-Ling</au><au>Lin, Te-Hsien</au><au>Chao, Chih-Ying</au><au>Lin, Chih-Hsin</au><au>Chen, I-Cheng</au><au>Lee, Li-Ching</au><au>Lin, Hsuan-Yuan</au><au>Wu, Yih-Ru</au><au>Chen, Yi-Chun</au><au>Chang, Kuo-Hsuan</au><au>Tang, Hsiang-Yu</au><au>Cheng, Mei-Ling</au><au>Lee-Chen, Guey-Jen</au><au>Lin, Jung-Yaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2–ARE pathways in cell models of spinocerebellar ataxia 3</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>71</volume><spage>339</spage><epage>350</epage><pages>339-350</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17 and dentatorubropallidoluysian atrophy, as well as Huntington disease, are a group of neurodegenerative disorders caused by a CAG triplet-repeat expansion encoding a long polyglutamine (polyQ) tract in the respective mutant proteins. The cytoplasmic and nuclear aggregate formation, a pathological hallmark of polyQ diseases, is probably the initial process triggering the subsequent pathological events. Compromised oxidative stress defense capacity and mitochondrial dysfunction have emerged as contributing factors to the pathogenesis of polyQ diseases. The roots of licorice (Glycyrrhiza species) have long been used as an herbal medicine. In this study, we demonstrate the aggregate-inhibitory effect of Glycyrrhiza inflata herb extract and its constituents licochalcone A and ammonium glycyrrhizinate (AMGZ) in both 293 and SH-SY5Y ATXN3/Q75 cells, SCA3 cell models. The reporter assay showed that G. inflata herb extract, licochalcone A, and AMGZ could enhance the promoter activity of peroxisome proliferator-activated receptor γ, coactivator 1α (PPARGC1A), a known regulator of mitochondrial biogenesis and antioxidative response genes. G. inflata extract, licochalcone A, and AMGZ upregulated PPARGC1A expression and its downstream target genes, SOD2 and CYCS, in the 293 ATXN3/Q75 cell model. The expression of nuclear factor erythroid 2-related factor 2 (NFE2L2), the principal transcription factor that binds to antioxidant-responsive elements (AREs) to promote ARE-dependent gene expression when the cells respond to oxidative stress, and its downstream genes, HMOX1, NQO1, GCLC, and GSTP1, was also increased by G. inflata herb extract, licochalcone A, and AMGZ. Knockdown of PPARGC1A increased aggregates in ATXN3/Q75 cells and also attenuated the aggregate-inhibiting effect of the tested compounds. G. inflata extract and its constituents significantly elevated GSH/GSSG ratio and reduced reactive oxidative species in ATXN3/Q75 cells. The study results suggest that the tested agents activate PPARGC1A activity and NFE2L2–ARE signaling to increase mitochondrial biogenesis, decrease oxidative stress, and reduce aggregate formation in SCA3 cellular models. •We report antiaggregation potential of G. inflata and components in 293/SH-SY5Y SCA3 cells.•G. inflata and components upregulate PPARGC1A, a regulator of mitochondrial biogenesis.•G. inflata and components activate NFE2L2–ARE signaling and suppress GSSG and ROS.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24675225</pmid><doi>10.1016/j.freeradbiomed.2014.03.023</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2014-06, Vol.71, p.339-350
issn 0891-5849
1873-4596
language eng
recordid cdi_proquest_miscellaneous_1654692072
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Ammonium glycyrrhizinate
Antioxidant Response Elements
ATXN3
Cell Line, Tumor
Chalcones - pharmacology
Free radicals
Gene Expression Regulation
Glutathione S-Transferase pi - genetics
Glutathione S-Transferase pi - metabolism
Glycyrrhiza
Glycyrrhiza - chemistry
Glycyrrhiza glabra
Glycyrrhiza inflata
Glycyrrhizic Acid - pharmacology
HEK293 Cells
Heme Oxygenase-1 - genetics
Heme Oxygenase-1 - metabolism
Humans
Licochalcone A
Machado-Joseph Disease - genetics
Machado-Joseph Disease - metabolism
Machado-Joseph Disease - pathology
Mitochondrial biogenesis
Models, Biological
NAD(P)H Dehydrogenase (Quinone) - genetics
NAD(P)H Dehydrogenase (Quinone) - metabolism
Neurons
NF-E2-Related Factor 2 - agonists
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
NFE2L2
Oxidative Stress
Peptides - antagonists & inhibitors
Peptides - chemistry
Peptides - metabolism
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Plant Extracts - chemistry
Plant Extracts - isolation & purification
Plant Extracts - pharmacology
Plant Roots - chemistry
PPARGC1A
Protein Aggregates
Signal Transduction
Spinocerebellar ataxia
Superoxide Dismutase
Transcription Factors - agonists
Transcription Factors - genetics
Transcription Factors - metabolism
Water
title Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2–ARE pathways in cell models of spinocerebellar ataxia 3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20extract%20of%20Glycyrrhiza%20inflata%20inhibits%20aggregation%20by%20upregulating%20PPARGC1A%20and%20NFE2L2%E2%80%93ARE%20pathways%20in%20cell%20models%20of%20spinocerebellar%20ataxia%203&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Chen,%20Chiung-Mei&rft.date=2014-06-01&rft.volume=71&rft.spage=339&rft.epage=350&rft.pages=339-350&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2014.03.023&rft_dat=%3Cproquest_cross%3E1529843126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529843126&rft_id=info:pmid/24675225&rft_els_id=S0891584914001403&rfr_iscdi=true