Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina
Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2013-02, Vol.77 (3), p.559-571 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 3 |
container_start_page | 559 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 77 |
creator | Chang, Le Breuninger, Tobias Euler, Thomas |
description | Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral axis, resulting in a “green”-dominant dorsal and a “blue”-dominant ventral retina. Here, we asked how these specializations affect chromatic processing, especially with respect to the opsin transitional zone, the band where opsin coexpression shifts from “green” to “blue.” Using electrophysiology, modeling, and calcium imaging, we found that “alpha-like” retinal ganglion cells, which previously have not been implicated in chromatic processing, display color-opponent responses when located in the vicinity of the opsin transitional zone. Moreover, direction-selective ganglion cells within this zone respond differentially to color sequences. Our data suggest that the dorsoventral opsin distribution, in combination with conventional spatiotemporal processing, renders mouse ganglion cell responses color-opponent without requiring cone-type selective connectivity.
► Retinal ganglion cells extract color information encoded in opsin gradients ► Color opponency arises from cone-type unselective retinal circuits ► A single opsin coexpressing cone type can suffice for generating color opponency ► Mouse direction-selective ganglion cells differentially encode color sequences
In mice, opsin coexpressing cone photoreceptors form a retinal gradient, which is usually considered detrimental to color vision. Here, Chang et al. demonstrate that color information is extracted from such gradients by conventional spatiotemporal processing in cone-type unselective retinal circuits. |
doi_str_mv | 10.1016/j.neuron.2012.12.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654689770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312011221</els_id><sourcerecordid>3557479231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8485f607e866bc7740c44597c3eb39fc62c7552eb0fd86043b04ddd9e9df6c2d3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWh__QGTAjZupyeQ12QgyqBUqgug6zCR3NKXN1GSm0H9vSqsLFwqBk8B3z725B6FzgscEE3E9G3sYQufHBSbFOJ0ke2hEsJI5I0rtoxEulchFIekROo5xhjFhXJFDdFRQqjgt8QhNqo_QLeremazqrPPvWZve6e4h79dLyN58hDmY3q0gq1wwg-tj5nzWf0D21A0Rshfona9P0UFbzyOc7fQEvd3fvVaTfPr88FjdTnPDhOrzkpW8FVhCKURjpGTYsDSUNBQaqlojCiM5L6DBrS0FZrTBzFqrQNlWmMLSE3S19V2G7nOA2OuFiwbm89pDGkcTwZkolZT4f7QohWJcEJrQy1_orBuCTx9JhoxTTineUGxLmdDFGKDVy-AWdVhrgvUmFD3T21D0JpTUQCdJZRc786FZgP0p-k4hATdbANLiVg6CjsaBN2BdSKvXtnN_d_gC2c6djw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645353303</pqid></control><display><type>article</type><title>Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Le ; Breuninger, Tobias ; Euler, Thomas</creator><creatorcontrib>Chang, Le ; Breuninger, Tobias ; Euler, Thomas</creatorcontrib><description>Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral axis, resulting in a “green”-dominant dorsal and a “blue”-dominant ventral retina. Here, we asked how these specializations affect chromatic processing, especially with respect to the opsin transitional zone, the band where opsin coexpression shifts from “green” to “blue.” Using electrophysiology, modeling, and calcium imaging, we found that “alpha-like” retinal ganglion cells, which previously have not been implicated in chromatic processing, display color-opponent responses when located in the vicinity of the opsin transitional zone. Moreover, direction-selective ganglion cells within this zone respond differentially to color sequences. Our data suggest that the dorsoventral opsin distribution, in combination with conventional spatiotemporal processing, renders mouse ganglion cell responses color-opponent without requiring cone-type selective connectivity.
► Retinal ganglion cells extract color information encoded in opsin gradients ► Color opponency arises from cone-type unselective retinal circuits ► A single opsin coexpressing cone type can suffice for generating color opponency ► Mouse direction-selective ganglion cells differentially encode color sequences
In mice, opsin coexpressing cone photoreceptors form a retinal gradient, which is usually considered detrimental to color vision. Here, Chang et al. demonstrate that color information is extracted from such gradients by conventional spatiotemporal processing in cone-type unselective retinal circuits.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.12.012</identifier><identifier>PMID: 23395380</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Anisotropy ; Calcium - metabolism ; Color Vision - physiology ; Dose-Response Relationship, Radiation ; Experiments ; Functional Laterality ; GABA Antagonists - pharmacology ; Green Fluorescent Proteins - genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Monkeys & apes ; Opsins - genetics ; Opsins - metabolism ; Phosphinic Acids - pharmacology ; Photic Stimulation ; Pyridazines - pharmacology ; Pyridines - pharmacology ; Retina ; Retina - cytology ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Ganglion Cells - drug effects ; Retinal Ganglion Cells - physiology ; Sodium Channel Blockers - pharmacology ; Tetrodotoxin - pharmacology ; Visual Pathways - drug effects ; Visual Pathways - physiology ; Visual Perception - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2013-02, Vol.77 (3), p.559-571</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 6, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-8485f607e866bc7740c44597c3eb39fc62c7552eb0fd86043b04ddd9e9df6c2d3</citedby><cites>FETCH-LOGICAL-c469t-8485f607e866bc7740c44597c3eb39fc62c7552eb0fd86043b04ddd9e9df6c2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2012.12.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23395380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Le</creatorcontrib><creatorcontrib>Breuninger, Tobias</creatorcontrib><creatorcontrib>Euler, Thomas</creatorcontrib><title>Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral axis, resulting in a “green”-dominant dorsal and a “blue”-dominant ventral retina. Here, we asked how these specializations affect chromatic processing, especially with respect to the opsin transitional zone, the band where opsin coexpression shifts from “green” to “blue.” Using electrophysiology, modeling, and calcium imaging, we found that “alpha-like” retinal ganglion cells, which previously have not been implicated in chromatic processing, display color-opponent responses when located in the vicinity of the opsin transitional zone. Moreover, direction-selective ganglion cells within this zone respond differentially to color sequences. Our data suggest that the dorsoventral opsin distribution, in combination with conventional spatiotemporal processing, renders mouse ganglion cell responses color-opponent without requiring cone-type selective connectivity.
► Retinal ganglion cells extract color information encoded in opsin gradients ► Color opponency arises from cone-type unselective retinal circuits ► A single opsin coexpressing cone type can suffice for generating color opponency ► Mouse direction-selective ganglion cells differentially encode color sequences
In mice, opsin coexpressing cone photoreceptors form a retinal gradient, which is usually considered detrimental to color vision. Here, Chang et al. demonstrate that color information is extracted from such gradients by conventional spatiotemporal processing in cone-type unselective retinal circuits.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Anisotropy</subject><subject>Calcium - metabolism</subject><subject>Color Vision - physiology</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Experiments</subject><subject>Functional Laterality</subject><subject>GABA Antagonists - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Monkeys & apes</subject><subject>Opsins - genetics</subject><subject>Opsins - metabolism</subject><subject>Phosphinic Acids - pharmacology</subject><subject>Photic Stimulation</subject><subject>Pyridazines - pharmacology</subject><subject>Pyridines - pharmacology</subject><subject>Retina</subject><subject>Retina - cytology</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Ganglion Cells - drug effects</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><subject>Visual Pathways - drug effects</subject><subject>Visual Pathways - physiology</subject><subject>Visual Perception - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLAzEUhYMoWh__QGTAjZupyeQ12QgyqBUqgug6zCR3NKXN1GSm0H9vSqsLFwqBk8B3z725B6FzgscEE3E9G3sYQufHBSbFOJ0ke2hEsJI5I0rtoxEulchFIekROo5xhjFhXJFDdFRQqjgt8QhNqo_QLeremazqrPPvWZve6e4h79dLyN58hDmY3q0gq1wwg-tj5nzWf0D21A0Rshfona9P0UFbzyOc7fQEvd3fvVaTfPr88FjdTnPDhOrzkpW8FVhCKURjpGTYsDSUNBQaqlojCiM5L6DBrS0FZrTBzFqrQNlWmMLSE3S19V2G7nOA2OuFiwbm89pDGkcTwZkolZT4f7QohWJcEJrQy1_orBuCTx9JhoxTTineUGxLmdDFGKDVy-AWdVhrgvUmFD3T21D0JpTUQCdJZRc786FZgP0p-k4hATdbANLiVg6CjsaBN2BdSKvXtnN_d_gC2c6djw</recordid><startdate>20130206</startdate><enddate>20130206</enddate><creator>Chang, Le</creator><creator>Breuninger, Tobias</creator><creator>Euler, Thomas</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130206</creationdate><title>Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina</title><author>Chang, Le ; Breuninger, Tobias ; Euler, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8485f607e866bc7740c44597c3eb39fc62c7552eb0fd86043b04ddd9e9df6c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Anisotropy</topic><topic>Calcium - metabolism</topic><topic>Color Vision - physiology</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Experiments</topic><topic>Functional Laterality</topic><topic>GABA Antagonists - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Monkeys & apes</topic><topic>Opsins - genetics</topic><topic>Opsins - metabolism</topic><topic>Phosphinic Acids - pharmacology</topic><topic>Photic Stimulation</topic><topic>Pyridazines - pharmacology</topic><topic>Pyridines - pharmacology</topic><topic>Retina</topic><topic>Retina - cytology</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Ganglion Cells - drug effects</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><topic>Visual Pathways - drug effects</topic><topic>Visual Pathways - physiology</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Le</creatorcontrib><creatorcontrib>Breuninger, Tobias</creatorcontrib><creatorcontrib>Euler, Thomas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Le</au><au>Breuninger, Tobias</au><au>Euler, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2013-02-06</date><risdate>2013</risdate><volume>77</volume><issue>3</issue><spage>559</spage><epage>571</epage><pages>559-571</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral axis, resulting in a “green”-dominant dorsal and a “blue”-dominant ventral retina. Here, we asked how these specializations affect chromatic processing, especially with respect to the opsin transitional zone, the band where opsin coexpression shifts from “green” to “blue.” Using electrophysiology, modeling, and calcium imaging, we found that “alpha-like” retinal ganglion cells, which previously have not been implicated in chromatic processing, display color-opponent responses when located in the vicinity of the opsin transitional zone. Moreover, direction-selective ganglion cells within this zone respond differentially to color sequences. Our data suggest that the dorsoventral opsin distribution, in combination with conventional spatiotemporal processing, renders mouse ganglion cell responses color-opponent without requiring cone-type selective connectivity.
► Retinal ganglion cells extract color information encoded in opsin gradients ► Color opponency arises from cone-type unselective retinal circuits ► A single opsin coexpressing cone type can suffice for generating color opponency ► Mouse direction-selective ganglion cells differentially encode color sequences
In mice, opsin coexpressing cone photoreceptors form a retinal gradient, which is usually considered detrimental to color vision. Here, Chang et al. demonstrate that color information is extracted from such gradients by conventional spatiotemporal processing in cone-type unselective retinal circuits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23395380</pmid><doi>10.1016/j.neuron.2012.12.012</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2013-02, Vol.77 (3), p.559-571 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1654689770 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals |
subjects | Action Potentials - drug effects Action Potentials - physiology Animals Anisotropy Calcium - metabolism Color Vision - physiology Dose-Response Relationship, Radiation Experiments Functional Laterality GABA Antagonists - pharmacology Green Fluorescent Proteins - genetics Mice Mice, Inbred C57BL Mice, Transgenic Monkeys & apes Opsins - genetics Opsins - metabolism Phosphinic Acids - pharmacology Photic Stimulation Pyridazines - pharmacology Pyridines - pharmacology Retina Retina - cytology Retinal Cone Photoreceptor Cells - physiology Retinal Ganglion Cells - drug effects Retinal Ganglion Cells - physiology Sodium Channel Blockers - pharmacology Tetrodotoxin - pharmacology Visual Pathways - drug effects Visual Pathways - physiology Visual Perception - physiology |
title | Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatic%20Coding%20from%20Cone-type%20Unselective%20Circuits%20in%20the%20Mouse%20Retina&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Chang,%20Le&rft.date=2013-02-06&rft.volume=77&rft.issue=3&rft.spage=559&rft.epage=571&rft.pages=559-571&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.12.012&rft_dat=%3Cproquest_cross%3E3557479231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645353303&rft_id=info:pmid/23395380&rft_els_id=S0896627312011221&rfr_iscdi=true |