Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina

Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2013-02, Vol.77 (3), p.559-571
Hauptverfasser: Chang, Le, Breuninger, Tobias, Euler, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 3
container_start_page 559
container_title Neuron (Cambridge, Mass.)
container_volume 77
creator Chang, Le
Breuninger, Tobias
Euler, Thomas
description Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral axis, resulting in a “green”-dominant dorsal and a “blue”-dominant ventral retina. Here, we asked how these specializations affect chromatic processing, especially with respect to the opsin transitional zone, the band where opsin coexpression shifts from “green” to “blue.” Using electrophysiology, modeling, and calcium imaging, we found that “alpha-like” retinal ganglion cells, which previously have not been implicated in chromatic processing, display color-opponent responses when located in the vicinity of the opsin transitional zone. Moreover, direction-selective ganglion cells within this zone respond differentially to color sequences. Our data suggest that the dorsoventral opsin distribution, in combination with conventional spatiotemporal processing, renders mouse ganglion cell responses color-opponent without requiring cone-type selective connectivity. ► Retinal ganglion cells extract color information encoded in opsin gradients ► Color opponency arises from cone-type unselective retinal circuits ► A single opsin coexpressing cone type can suffice for generating color opponency ► Mouse direction-selective ganglion cells differentially encode color sequences In mice, opsin coexpressing cone photoreceptors form a retinal gradient, which is usually considered detrimental to color vision. Here, Chang et al. demonstrate that color information is extracted from such gradients by conventional spatiotemporal processing in cone-type unselective retinal circuits.
doi_str_mv 10.1016/j.neuron.2012.12.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654689770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312011221</els_id><sourcerecordid>3557479231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8485f607e866bc7740c44597c3eb39fc62c7552eb0fd86043b04ddd9e9df6c2d3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWh__QGTAjZupyeQ12QgyqBUqgug6zCR3NKXN1GSm0H9vSqsLFwqBk8B3z725B6FzgscEE3E9G3sYQufHBSbFOJ0ke2hEsJI5I0rtoxEulchFIekROo5xhjFhXJFDdFRQqjgt8QhNqo_QLeremazqrPPvWZve6e4h79dLyN58hDmY3q0gq1wwg-tj5nzWf0D21A0Rshfona9P0UFbzyOc7fQEvd3fvVaTfPr88FjdTnPDhOrzkpW8FVhCKURjpGTYsDSUNBQaqlojCiM5L6DBrS0FZrTBzFqrQNlWmMLSE3S19V2G7nOA2OuFiwbm89pDGkcTwZkolZT4f7QohWJcEJrQy1_orBuCTx9JhoxTTineUGxLmdDFGKDVy-AWdVhrgvUmFD3T21D0JpTUQCdJZRc786FZgP0p-k4hATdbANLiVg6CjsaBN2BdSKvXtnN_d_gC2c6djw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645353303</pqid></control><display><type>article</type><title>Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Le ; Breuninger, Tobias ; Euler, Thomas</creator><creatorcontrib>Chang, Le ; Breuninger, Tobias ; Euler, Thomas</creatorcontrib><description>Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral axis, resulting in a “green”-dominant dorsal and a “blue”-dominant ventral retina. Here, we asked how these specializations affect chromatic processing, especially with respect to the opsin transitional zone, the band where opsin coexpression shifts from “green” to “blue.” Using electrophysiology, modeling, and calcium imaging, we found that “alpha-like” retinal ganglion cells, which previously have not been implicated in chromatic processing, display color-opponent responses when located in the vicinity of the opsin transitional zone. Moreover, direction-selective ganglion cells within this zone respond differentially to color sequences. Our data suggest that the dorsoventral opsin distribution, in combination with conventional spatiotemporal processing, renders mouse ganglion cell responses color-opponent without requiring cone-type selective connectivity. ► Retinal ganglion cells extract color information encoded in opsin gradients ► Color opponency arises from cone-type unselective retinal circuits ► A single opsin coexpressing cone type can suffice for generating color opponency ► Mouse direction-selective ganglion cells differentially encode color sequences In mice, opsin coexpressing cone photoreceptors form a retinal gradient, which is usually considered detrimental to color vision. Here, Chang et al. demonstrate that color information is extracted from such gradients by conventional spatiotemporal processing in cone-type unselective retinal circuits.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.12.012</identifier><identifier>PMID: 23395380</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Anisotropy ; Calcium - metabolism ; Color Vision - physiology ; Dose-Response Relationship, Radiation ; Experiments ; Functional Laterality ; GABA Antagonists - pharmacology ; Green Fluorescent Proteins - genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Monkeys &amp; apes ; Opsins - genetics ; Opsins - metabolism ; Phosphinic Acids - pharmacology ; Photic Stimulation ; Pyridazines - pharmacology ; Pyridines - pharmacology ; Retina ; Retina - cytology ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Ganglion Cells - drug effects ; Retinal Ganglion Cells - physiology ; Sodium Channel Blockers - pharmacology ; Tetrodotoxin - pharmacology ; Visual Pathways - drug effects ; Visual Pathways - physiology ; Visual Perception - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2013-02, Vol.77 (3), p.559-571</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 6, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-8485f607e866bc7740c44597c3eb39fc62c7552eb0fd86043b04ddd9e9df6c2d3</citedby><cites>FETCH-LOGICAL-c469t-8485f607e866bc7740c44597c3eb39fc62c7552eb0fd86043b04ddd9e9df6c2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2012.12.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23395380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Le</creatorcontrib><creatorcontrib>Breuninger, Tobias</creatorcontrib><creatorcontrib>Euler, Thomas</creatorcontrib><title>Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral axis, resulting in a “green”-dominant dorsal and a “blue”-dominant ventral retina. Here, we asked how these specializations affect chromatic processing, especially with respect to the opsin transitional zone, the band where opsin coexpression shifts from “green” to “blue.” Using electrophysiology, modeling, and calcium imaging, we found that “alpha-like” retinal ganglion cells, which previously have not been implicated in chromatic processing, display color-opponent responses when located in the vicinity of the opsin transitional zone. Moreover, direction-selective ganglion cells within this zone respond differentially to color sequences. Our data suggest that the dorsoventral opsin distribution, in combination with conventional spatiotemporal processing, renders mouse ganglion cell responses color-opponent without requiring cone-type selective connectivity. ► Retinal ganglion cells extract color information encoded in opsin gradients ► Color opponency arises from cone-type unselective retinal circuits ► A single opsin coexpressing cone type can suffice for generating color opponency ► Mouse direction-selective ganglion cells differentially encode color sequences In mice, opsin coexpressing cone photoreceptors form a retinal gradient, which is usually considered detrimental to color vision. Here, Chang et al. demonstrate that color information is extracted from such gradients by conventional spatiotemporal processing in cone-type unselective retinal circuits.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Anisotropy</subject><subject>Calcium - metabolism</subject><subject>Color Vision - physiology</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Experiments</subject><subject>Functional Laterality</subject><subject>GABA Antagonists - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Monkeys &amp; apes</subject><subject>Opsins - genetics</subject><subject>Opsins - metabolism</subject><subject>Phosphinic Acids - pharmacology</subject><subject>Photic Stimulation</subject><subject>Pyridazines - pharmacology</subject><subject>Pyridines - pharmacology</subject><subject>Retina</subject><subject>Retina - cytology</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Ganglion Cells - drug effects</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><subject>Visual Pathways - drug effects</subject><subject>Visual Pathways - physiology</subject><subject>Visual Perception - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLAzEUhYMoWh__QGTAjZupyeQ12QgyqBUqgug6zCR3NKXN1GSm0H9vSqsLFwqBk8B3z725B6FzgscEE3E9G3sYQufHBSbFOJ0ke2hEsJI5I0rtoxEulchFIekROo5xhjFhXJFDdFRQqjgt8QhNqo_QLeremazqrPPvWZve6e4h79dLyN58hDmY3q0gq1wwg-tj5nzWf0D21A0Rshfona9P0UFbzyOc7fQEvd3fvVaTfPr88FjdTnPDhOrzkpW8FVhCKURjpGTYsDSUNBQaqlojCiM5L6DBrS0FZrTBzFqrQNlWmMLSE3S19V2G7nOA2OuFiwbm89pDGkcTwZkolZT4f7QohWJcEJrQy1_orBuCTx9JhoxTTineUGxLmdDFGKDVy-AWdVhrgvUmFD3T21D0JpTUQCdJZRc786FZgP0p-k4hATdbANLiVg6CjsaBN2BdSKvXtnN_d_gC2c6djw</recordid><startdate>20130206</startdate><enddate>20130206</enddate><creator>Chang, Le</creator><creator>Breuninger, Tobias</creator><creator>Euler, Thomas</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130206</creationdate><title>Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina</title><author>Chang, Le ; Breuninger, Tobias ; Euler, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8485f607e866bc7740c44597c3eb39fc62c7552eb0fd86043b04ddd9e9df6c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Anisotropy</topic><topic>Calcium - metabolism</topic><topic>Color Vision - physiology</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Experiments</topic><topic>Functional Laterality</topic><topic>GABA Antagonists - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Monkeys &amp; apes</topic><topic>Opsins - genetics</topic><topic>Opsins - metabolism</topic><topic>Phosphinic Acids - pharmacology</topic><topic>Photic Stimulation</topic><topic>Pyridazines - pharmacology</topic><topic>Pyridines - pharmacology</topic><topic>Retina</topic><topic>Retina - cytology</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Ganglion Cells - drug effects</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><topic>Visual Pathways - drug effects</topic><topic>Visual Pathways - physiology</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Le</creatorcontrib><creatorcontrib>Breuninger, Tobias</creatorcontrib><creatorcontrib>Euler, Thomas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Le</au><au>Breuninger, Tobias</au><au>Euler, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2013-02-06</date><risdate>2013</risdate><volume>77</volume><issue>3</issue><spage>559</spage><epage>571</epage><pages>559-571</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Retinal specializations such as cone-photoreceptor opsin-expression gradients, as found in several vertebrate species, are intuitively considered detrimental to color vision. In mice, the majority of cones coexpress both “blue” and “green” opsin. The coexpression ratio changes along the dorsoventral axis, resulting in a “green”-dominant dorsal and a “blue”-dominant ventral retina. Here, we asked how these specializations affect chromatic processing, especially with respect to the opsin transitional zone, the band where opsin coexpression shifts from “green” to “blue.” Using electrophysiology, modeling, and calcium imaging, we found that “alpha-like” retinal ganglion cells, which previously have not been implicated in chromatic processing, display color-opponent responses when located in the vicinity of the opsin transitional zone. Moreover, direction-selective ganglion cells within this zone respond differentially to color sequences. Our data suggest that the dorsoventral opsin distribution, in combination with conventional spatiotemporal processing, renders mouse ganglion cell responses color-opponent without requiring cone-type selective connectivity. ► Retinal ganglion cells extract color information encoded in opsin gradients ► Color opponency arises from cone-type unselective retinal circuits ► A single opsin coexpressing cone type can suffice for generating color opponency ► Mouse direction-selective ganglion cells differentially encode color sequences In mice, opsin coexpressing cone photoreceptors form a retinal gradient, which is usually considered detrimental to color vision. Here, Chang et al. demonstrate that color information is extracted from such gradients by conventional spatiotemporal processing in cone-type unselective retinal circuits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23395380</pmid><doi>10.1016/j.neuron.2012.12.012</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2013-02, Vol.77 (3), p.559-571
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1654689770
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Action Potentials - drug effects
Action Potentials - physiology
Animals
Anisotropy
Calcium - metabolism
Color Vision - physiology
Dose-Response Relationship, Radiation
Experiments
Functional Laterality
GABA Antagonists - pharmacology
Green Fluorescent Proteins - genetics
Mice
Mice, Inbred C57BL
Mice, Transgenic
Monkeys & apes
Opsins - genetics
Opsins - metabolism
Phosphinic Acids - pharmacology
Photic Stimulation
Pyridazines - pharmacology
Pyridines - pharmacology
Retina
Retina - cytology
Retinal Cone Photoreceptor Cells - physiology
Retinal Ganglion Cells - drug effects
Retinal Ganglion Cells - physiology
Sodium Channel Blockers - pharmacology
Tetrodotoxin - pharmacology
Visual Pathways - drug effects
Visual Pathways - physiology
Visual Perception - physiology
title Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatic%20Coding%20from%20Cone-type%20Unselective%20Circuits%20in%20the%20Mouse%20Retina&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Chang,%20Le&rft.date=2013-02-06&rft.volume=77&rft.issue=3&rft.spage=559&rft.epage=571&rft.pages=559-571&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.12.012&rft_dat=%3Cproquest_cross%3E3557479231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645353303&rft_id=info:pmid/23395380&rft_els_id=S0896627312011221&rfr_iscdi=true