Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758

Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2)
Hauptverfasser: Arvanitis, Constadina, Khuon, Satya, Spann, Rachel, Ridge, Karen M, Chew, Teng-Leong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title PloS one
container_volume 9
creator Arvanitis, Constadina
Khuon, Satya
Spann, Rachel
Ridge, Karen M
Chew, Teng-Leong
description Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell.
doi_str_mv 10.1371/journal.pone.0089758
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654688447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1654688447</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16546884473</originalsourceid><addsrcrecordid>eNqVjsFKAzEURYMgtGr_wMVbuumYNDOZ1J2Wiq6dfQnpG5qSeakvieDfq0Xcuzpw74F7hbhVslG6V_fHVJlcbE6JsJHSrvvOXoi5WuvV0qyknomrnI9SdtoaMxflrXD1pTKCoz08hTShPzgKPkMaoRwQtrRP34zBRRjYUfYYY42OYRPY12lERio_7St9uBwSwSOz-4RAMNQp8V_-AHj-cyMuRxczLn55Le6et8PmZXni9F4xl90UziuOMNW8U6ZrjbVt2-t_qF8VvFeZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654688447</pqid></control><display><type>article</type><title>Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Arvanitis, Constadina ; Khuon, Satya ; Spann, Rachel ; Ridge, Karen M ; Chew, Teng-Leong</creator><creatorcontrib>Arvanitis, Constadina ; Khuon, Satya ; Spann, Rachel ; Ridge, Karen M ; Chew, Teng-Leong</creatorcontrib><description>Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell.</description><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0089758</identifier><language>eng</language><ispartof>PloS one, 2014-02, Vol.9 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Arvanitis, Constadina</creatorcontrib><creatorcontrib>Khuon, Satya</creatorcontrib><creatorcontrib>Spann, Rachel</creatorcontrib><creatorcontrib>Ridge, Karen M</creatorcontrib><creatorcontrib>Chew, Teng-Leong</creatorcontrib><title>Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758</title><title>PloS one</title><description>Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell.</description><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVjsFKAzEURYMgtGr_wMVbuumYNDOZ1J2Wiq6dfQnpG5qSeakvieDfq0Xcuzpw74F7hbhVslG6V_fHVJlcbE6JsJHSrvvOXoi5WuvV0qyknomrnI9SdtoaMxflrXD1pTKCoz08hTShPzgKPkMaoRwQtrRP34zBRRjYUfYYY42OYRPY12lERio_7St9uBwSwSOz-4RAMNQp8V_-AHj-cyMuRxczLn55Le6et8PmZXni9F4xl90UziuOMNW8U6ZrjbVt2-t_qF8VvFeZ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Arvanitis, Constadina</creator><creator>Khuon, Satya</creator><creator>Spann, Rachel</creator><creator>Ridge, Karen M</creator><creator>Chew, Teng-Leong</creator><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140201</creationdate><title>Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758</title><author>Arvanitis, Constadina ; Khuon, Satya ; Spann, Rachel ; Ridge, Karen M ; Chew, Teng-Leong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16546884473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arvanitis, Constadina</creatorcontrib><creatorcontrib>Khuon, Satya</creatorcontrib><creatorcontrib>Spann, Rachel</creatorcontrib><creatorcontrib>Ridge, Karen M</creatorcontrib><creatorcontrib>Chew, Teng-Leong</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arvanitis, Constadina</au><au>Khuon, Satya</au><au>Spann, Rachel</au><au>Ridge, Karen M</au><au>Chew, Teng-Leong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758</atitle><jtitle>PloS one</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><eissn>1932-6203</eissn><abstract>Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell.</abstract><doi>10.1371/journal.pone.0089758</doi></addata></record>
fulltext fulltext
identifier EISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2)
issn 1932-6203
language eng
recordid cdi_proquest_miscellaneous_1654688447
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
title Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Biomechanics%20of%20the%20Endothelial%20Transcellular%20Circumferential%20Invasion%20Array%20in%20Tumor%20Invasion:%20e89758&rft.jtitle=PloS%20one&rft.au=Arvanitis,%20Constadina&rft.date=2014-02-01&rft.volume=9&rft.issue=2&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0089758&rft_dat=%3Cproquest%3E1654688447%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654688447&rft_id=info:pmid/&rfr_iscdi=true