Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758
Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-02, Vol.9 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | PloS one |
container_volume | 9 |
creator | Arvanitis, Constadina Khuon, Satya Spann, Rachel Ridge, Karen M Chew, Teng-Leong |
description | Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell. |
doi_str_mv | 10.1371/journal.pone.0089758 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654688447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1654688447</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16546884473</originalsourceid><addsrcrecordid>eNqVjsFKAzEURYMgtGr_wMVbuumYNDOZ1J2Wiq6dfQnpG5qSeakvieDfq0Xcuzpw74F7hbhVslG6V_fHVJlcbE6JsJHSrvvOXoi5WuvV0qyknomrnI9SdtoaMxflrXD1pTKCoz08hTShPzgKPkMaoRwQtrRP34zBRRjYUfYYY42OYRPY12lERio_7St9uBwSwSOz-4RAMNQp8V_-AHj-cyMuRxczLn55Le6et8PmZXni9F4xl90UziuOMNW8U6ZrjbVt2-t_qF8VvFeZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654688447</pqid></control><display><type>article</type><title>Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Arvanitis, Constadina ; Khuon, Satya ; Spann, Rachel ; Ridge, Karen M ; Chew, Teng-Leong</creator><creatorcontrib>Arvanitis, Constadina ; Khuon, Satya ; Spann, Rachel ; Ridge, Karen M ; Chew, Teng-Leong</creatorcontrib><description>Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell.</description><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0089758</identifier><language>eng</language><ispartof>PloS one, 2014-02, Vol.9 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Arvanitis, Constadina</creatorcontrib><creatorcontrib>Khuon, Satya</creatorcontrib><creatorcontrib>Spann, Rachel</creatorcontrib><creatorcontrib>Ridge, Karen M</creatorcontrib><creatorcontrib>Chew, Teng-Leong</creatorcontrib><title>Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758</title><title>PloS one</title><description>Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell.</description><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVjsFKAzEURYMgtGr_wMVbuumYNDOZ1J2Wiq6dfQnpG5qSeakvieDfq0Xcuzpw74F7hbhVslG6V_fHVJlcbE6JsJHSrvvOXoi5WuvV0qyknomrnI9SdtoaMxflrXD1pTKCoz08hTShPzgKPkMaoRwQtrRP34zBRRjYUfYYY42OYRPY12lERio_7St9uBwSwSOz-4RAMNQp8V_-AHj-cyMuRxczLn55Le6et8PmZXni9F4xl90UziuOMNW8U6ZrjbVt2-t_qF8VvFeZ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Arvanitis, Constadina</creator><creator>Khuon, Satya</creator><creator>Spann, Rachel</creator><creator>Ridge, Karen M</creator><creator>Chew, Teng-Leong</creator><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140201</creationdate><title>Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758</title><author>Arvanitis, Constadina ; Khuon, Satya ; Spann, Rachel ; Ridge, Karen M ; Chew, Teng-Leong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16546884473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arvanitis, Constadina</creatorcontrib><creatorcontrib>Khuon, Satya</creatorcontrib><creatorcontrib>Spann, Rachel</creatorcontrib><creatorcontrib>Ridge, Karen M</creatorcontrib><creatorcontrib>Chew, Teng-Leong</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arvanitis, Constadina</au><au>Khuon, Satya</au><au>Spann, Rachel</au><au>Ridge, Karen M</au><au>Chew, Teng-Leong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758</atitle><jtitle>PloS one</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><eissn>1932-6203</eissn><abstract>Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell.</abstract><doi>10.1371/journal.pone.0089758</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1932-6203 |
ispartof | PloS one, 2014-02, Vol.9 (2) |
issn | 1932-6203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1654688447 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
title | Structure and Biomechanics of the Endothelial Transcellular Circumferential Invasion Array in Tumor Invasion: e89758 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Biomechanics%20of%20the%20Endothelial%20Transcellular%20Circumferential%20Invasion%20Array%20in%20Tumor%20Invasion:%20e89758&rft.jtitle=PloS%20one&rft.au=Arvanitis,%20Constadina&rft.date=2014-02-01&rft.volume=9&rft.issue=2&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0089758&rft_dat=%3Cproquest%3E1654688447%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654688447&rft_id=info:pmid/&rfr_iscdi=true |