Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure
Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often bas...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (42), p.15196-15201 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15201 |
---|---|
container_issue | 42 |
container_start_page | 15196 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Crocini, Claudia Coppini, Raffaele Ferrantini, Cecilia Yan, Ping Loew, Leslie M. Tesi, Chiara Cerbai, Elisabetta Poggesi, Corrado Pavone, Francesco S. Sacconi, Leonardo |
description | Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often based on attempts to accelerate Ca ²⁺ transients. Here, we demonstrate that T-tubular loss represents just one way by which T-tubule dysfunction leads to asynchronous Ca ²⁺ release across the myocyte. In fact, we report that defects in T-tubular electrical activity may contribute to Ca ²⁺-mediated arrhythmogenesis not only by favoring asynchronous Ca ²⁺ release, but also by generating voltage-associated Ca ²⁺ sparks. This work provides the first description to our knowledge of these novel proarrhythmogenic events that could help guide future therapeutic strategies.
Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca ²⁺ release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca ²⁺ release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca ²⁺ release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca ²⁺ release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca ²⁺ transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca ²⁺ release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca ²⁺ release, resulting in Ca ²⁺ sparks. The occurrence of tubule-driven depolarizations and Ca ²⁺ sparks may contribute to the arrhythmic burden in heart failure. |
doi_str_mv | 10.1073/pnas.1411557111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654685054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43189901</jstor_id><sourcerecordid>43189901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-4101558089b93dd4a9b261415b7d6124d371007ff584bd4f273b67bf3058c4bd3</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEokvhzAmwxIVL2pnYju1LJVQ-pUocaM-Wkzhbr7zxYjuV-t_jsMvycYFTpDe_efEbvap6jnCGIOj5bjLpDBki5wIRH1QrBIV1yxQ8rFYAjagla9hJ9SSlDQAoLuFxddLwRkrRslW1fmdH2-dE3ESu6zx3szeRWF-06Hrjiemzu3P5nszTYKN3lvjwQ_fZRpNdmBIJIylS7-YtiWXVJLvY3VoTMxmN83O0T6tHo_HJPjt8T6ubD--vLz_VV18-fr58e1X3nMtcM4QSRYJUnaLDwIzqmrbk450YWmzYQAUCiHHkknUDGxtBu1Z0IwUu-6LQ0-pi77ubu60dejvlaLzeRbc18V4H4_Sfk8nd6nW406xBoEwVgzcHgxi-zTZlvXWpt96byYY5aZRAQUjK23-jLWet5MDZf6DIBZVK8IK-_gvdhDlO5WgL1fLyACEKdb6n-hhSinY8RkTQSzX0Ug39qxpl4-XvlznyP7tQAHIAls2jHWK5jUaOakn8Yo9sUg7xyDCKUilY_vFqPx9N0GYdXdI3XxvAFspQCkXpdxMl0XY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616518077</pqid></control><display><type>article</type><title>Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Crocini, Claudia ; Coppini, Raffaele ; Ferrantini, Cecilia ; Yan, Ping ; Loew, Leslie M. ; Tesi, Chiara ; Cerbai, Elisabetta ; Poggesi, Corrado ; Pavone, Francesco S. ; Sacconi, Leonardo</creator><creatorcontrib>Crocini, Claudia ; Coppini, Raffaele ; Ferrantini, Cecilia ; Yan, Ping ; Loew, Leslie M. ; Tesi, Chiara ; Cerbai, Elisabetta ; Poggesi, Corrado ; Pavone, Francesco S. ; Sacconi, Leonardo</creatorcontrib><description>Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often based on attempts to accelerate Ca ²⁺ transients. Here, we demonstrate that T-tubular loss represents just one way by which T-tubule dysfunction leads to asynchronous Ca ²⁺ release across the myocyte. In fact, we report that defects in T-tubular electrical activity may contribute to Ca ²⁺-mediated arrhythmogenesis not only by favoring asynchronous Ca ²⁺ release, but also by generating voltage-associated Ca ²⁺ sparks. This work provides the first description to our knowledge of these novel proarrhythmogenic events that could help guide future therapeutic strategies.
Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca ²⁺ release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca ²⁺ release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca ²⁺ release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca ²⁺ release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca ²⁺ transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca ²⁺ release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca ²⁺ release, resulting in Ca ²⁺ sparks. The occurrence of tubule-driven depolarizations and Ca ²⁺ sparks may contribute to the arrhythmic burden in heart failure.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1411557111</identifier><identifier>PMID: 25288764</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials - physiology ; Animals ; Biological Sciences ; Calcium ; Calcium - metabolism ; Calcium Signaling - physiology ; Cardiomyocytes ; Cells, Cultured ; Depolarization ; Dysrhythmias ; Electric potential ; Fluorescence ; Green Fluorescent Proteins - metabolism ; Heart ; Heart failure ; Heart Failure - metabolism ; Heart Ventricles - cytology ; Heart Ventricles - metabolism ; Kinetics ; Male ; Muscle Cells - cytology ; Myocardial Contraction - physiology ; Myocardium ; Myocytes, Cardiac - metabolism ; plasma membrane ; Rats ; Rats, Wistar ; Receptors ; Renovations ; Rodents ; Sarcoplasmic Reticulum - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15196-15201</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 21, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-4101558089b93dd4a9b261415b7d6124d371007ff584bd4f273b67bf3058c4bd3</citedby><cites>FETCH-LOGICAL-c558t-4101558089b93dd4a9b261415b7d6124d371007ff584bd4f273b67bf3058c4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43189901$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43189901$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crocini, Claudia</creatorcontrib><creatorcontrib>Coppini, Raffaele</creatorcontrib><creatorcontrib>Ferrantini, Cecilia</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><creatorcontrib>Loew, Leslie M.</creatorcontrib><creatorcontrib>Tesi, Chiara</creatorcontrib><creatorcontrib>Cerbai, Elisabetta</creatorcontrib><creatorcontrib>Poggesi, Corrado</creatorcontrib><creatorcontrib>Pavone, Francesco S.</creatorcontrib><creatorcontrib>Sacconi, Leonardo</creatorcontrib><title>Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often based on attempts to accelerate Ca ²⁺ transients. Here, we demonstrate that T-tubular loss represents just one way by which T-tubule dysfunction leads to asynchronous Ca ²⁺ release across the myocyte. In fact, we report that defects in T-tubular electrical activity may contribute to Ca ²⁺-mediated arrhythmogenesis not only by favoring asynchronous Ca ²⁺ release, but also by generating voltage-associated Ca ²⁺ sparks. This work provides the first description to our knowledge of these novel proarrhythmogenic events that could help guide future therapeutic strategies.
Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca ²⁺ release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca ²⁺ release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca ²⁺ release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca ²⁺ release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca ²⁺ transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca ²⁺ release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca ²⁺ release, resulting in Ca ²⁺ sparks. The occurrence of tubule-driven depolarizations and Ca ²⁺ sparks may contribute to the arrhythmic burden in heart failure.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - physiology</subject><subject>Cardiomyocytes</subject><subject>Cells, Cultured</subject><subject>Depolarization</subject><subject>Dysrhythmias</subject><subject>Electric potential</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Heart</subject><subject>Heart failure</subject><subject>Heart Failure - metabolism</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - metabolism</subject><subject>Kinetics</subject><subject>Male</subject><subject>Muscle Cells - cytology</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocardium</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>plasma membrane</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors</subject><subject>Renovations</subject><subject>Rodents</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1v1DAQxSMEokvhzAmwxIVL2pnYju1LJVQ-pUocaM-Wkzhbr7zxYjuV-t_jsMvycYFTpDe_efEbvap6jnCGIOj5bjLpDBki5wIRH1QrBIV1yxQ8rFYAjagla9hJ9SSlDQAoLuFxddLwRkrRslW1fmdH2-dE3ESu6zx3szeRWF-06Hrjiemzu3P5nszTYKN3lvjwQ_fZRpNdmBIJIylS7-YtiWXVJLvY3VoTMxmN83O0T6tHo_HJPjt8T6ubD--vLz_VV18-fr58e1X3nMtcM4QSRYJUnaLDwIzqmrbk450YWmzYQAUCiHHkknUDGxtBu1Z0IwUu-6LQ0-pi77ubu60dejvlaLzeRbc18V4H4_Sfk8nd6nW406xBoEwVgzcHgxi-zTZlvXWpt96byYY5aZRAQUjK23-jLWet5MDZf6DIBZVK8IK-_gvdhDlO5WgL1fLyACEKdb6n-hhSinY8RkTQSzX0Ug39qxpl4-XvlznyP7tQAHIAls2jHWK5jUaOakn8Yo9sUg7xyDCKUilY_vFqPx9N0GYdXdI3XxvAFspQCkXpdxMl0XY</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Crocini, Claudia</creator><creator>Coppini, Raffaele</creator><creator>Ferrantini, Cecilia</creator><creator>Yan, Ping</creator><creator>Loew, Leslie M.</creator><creator>Tesi, Chiara</creator><creator>Cerbai, Elisabetta</creator><creator>Poggesi, Corrado</creator><creator>Pavone, Francesco S.</creator><creator>Sacconi, Leonardo</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141021</creationdate><title>Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure</title><author>Crocini, Claudia ; Coppini, Raffaele ; Ferrantini, Cecilia ; Yan, Ping ; Loew, Leslie M. ; Tesi, Chiara ; Cerbai, Elisabetta ; Poggesi, Corrado ; Pavone, Francesco S. ; Sacconi, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-4101558089b93dd4a9b261415b7d6124d371007ff584bd4f273b67bf3058c4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - physiology</topic><topic>Cardiomyocytes</topic><topic>Cells, Cultured</topic><topic>Depolarization</topic><topic>Dysrhythmias</topic><topic>Electric potential</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Heart</topic><topic>Heart failure</topic><topic>Heart Failure - metabolism</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - metabolism</topic><topic>Kinetics</topic><topic>Male</topic><topic>Muscle Cells - cytology</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocardium</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>plasma membrane</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors</topic><topic>Renovations</topic><topic>Rodents</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crocini, Claudia</creatorcontrib><creatorcontrib>Coppini, Raffaele</creatorcontrib><creatorcontrib>Ferrantini, Cecilia</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><creatorcontrib>Loew, Leslie M.</creatorcontrib><creatorcontrib>Tesi, Chiara</creatorcontrib><creatorcontrib>Cerbai, Elisabetta</creatorcontrib><creatorcontrib>Poggesi, Corrado</creatorcontrib><creatorcontrib>Pavone, Francesco S.</creatorcontrib><creatorcontrib>Sacconi, Leonardo</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crocini, Claudia</au><au>Coppini, Raffaele</au><au>Ferrantini, Cecilia</au><au>Yan, Ping</au><au>Loew, Leslie M.</au><au>Tesi, Chiara</au><au>Cerbai, Elisabetta</au><au>Poggesi, Corrado</au><au>Pavone, Francesco S.</au><au>Sacconi, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>111</volume><issue>42</issue><spage>15196</spage><epage>15201</epage><pages>15196-15201</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often based on attempts to accelerate Ca ²⁺ transients. Here, we demonstrate that T-tubular loss represents just one way by which T-tubule dysfunction leads to asynchronous Ca ²⁺ release across the myocyte. In fact, we report that defects in T-tubular electrical activity may contribute to Ca ²⁺-mediated arrhythmogenesis not only by favoring asynchronous Ca ²⁺ release, but also by generating voltage-associated Ca ²⁺ sparks. This work provides the first description to our knowledge of these novel proarrhythmogenic events that could help guide future therapeutic strategies.
Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca ²⁺ release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca ²⁺ release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca ²⁺ release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca ²⁺ release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca ²⁺ transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca ²⁺ release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca ²⁺ release, resulting in Ca ²⁺ sparks. The occurrence of tubule-driven depolarizations and Ca ²⁺ sparks may contribute to the arrhythmic burden in heart failure.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25288764</pmid><doi>10.1073/pnas.1411557111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15196-15201 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1654685054 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Action Potentials - physiology Animals Biological Sciences Calcium Calcium - metabolism Calcium Signaling - physiology Cardiomyocytes Cells, Cultured Depolarization Dysrhythmias Electric potential Fluorescence Green Fluorescent Proteins - metabolism Heart Heart failure Heart Failure - metabolism Heart Ventricles - cytology Heart Ventricles - metabolism Kinetics Male Muscle Cells - cytology Myocardial Contraction - physiology Myocardium Myocytes, Cardiac - metabolism plasma membrane Rats Rats, Wistar Receptors Renovations Rodents Sarcoplasmic Reticulum - metabolism |
title | Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20in%20T-tubular%20electrical%20activity%20underlie%20local%20alterations%20of%20calcium%20release%20in%20heart%20failure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Crocini,%20Claudia&rft.date=2014-10-21&rft.volume=111&rft.issue=42&rft.spage=15196&rft.epage=15201&rft.pages=15196-15201&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1411557111&rft_dat=%3Cjstor_proqu%3E43189901%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616518077&rft_id=info:pmid/25288764&rft_jstor_id=43189901&rfr_iscdi=true |