Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure

Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (42), p.15196-15201
Hauptverfasser: Crocini, Claudia, Coppini, Raffaele, Ferrantini, Cecilia, Yan, Ping, Loew, Leslie M., Tesi, Chiara, Cerbai, Elisabetta, Poggesi, Corrado, Pavone, Francesco S., Sacconi, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15201
container_issue 42
container_start_page 15196
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Crocini, Claudia
Coppini, Raffaele
Ferrantini, Cecilia
Yan, Ping
Loew, Leslie M.
Tesi, Chiara
Cerbai, Elisabetta
Poggesi, Corrado
Pavone, Francesco S.
Sacconi, Leonardo
description Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often based on attempts to accelerate Ca ²⁺ transients. Here, we demonstrate that T-tubular loss represents just one way by which T-tubule dysfunction leads to asynchronous Ca ²⁺ release across the myocyte. In fact, we report that defects in T-tubular electrical activity may contribute to Ca ²⁺-mediated arrhythmogenesis not only by favoring asynchronous Ca ²⁺ release, but also by generating voltage-associated Ca ²⁺ sparks. This work provides the first description to our knowledge of these novel proarrhythmogenic events that could help guide future therapeutic strategies. Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca ²⁺ release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca ²⁺ release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca ²⁺ release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca ²⁺ release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca ²⁺ transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca ²⁺ release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca ²⁺ release, resulting in Ca ²⁺ sparks. The occurrence of tubule-driven depolarizations and Ca ²⁺ sparks may contribute to the arrhythmic burden in heart failure.
doi_str_mv 10.1073/pnas.1411557111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654685054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43189901</jstor_id><sourcerecordid>43189901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-4101558089b93dd4a9b261415b7d6124d371007ff584bd4f273b67bf3058c4bd3</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEokvhzAmwxIVL2pnYju1LJVQ-pUocaM-Wkzhbr7zxYjuV-t_jsMvycYFTpDe_efEbvap6jnCGIOj5bjLpDBki5wIRH1QrBIV1yxQ8rFYAjagla9hJ9SSlDQAoLuFxddLwRkrRslW1fmdH2-dE3ESu6zx3szeRWF-06Hrjiemzu3P5nszTYKN3lvjwQ_fZRpNdmBIJIylS7-YtiWXVJLvY3VoTMxmN83O0T6tHo_HJPjt8T6ubD--vLz_VV18-fr58e1X3nMtcM4QSRYJUnaLDwIzqmrbk450YWmzYQAUCiHHkknUDGxtBu1Z0IwUu-6LQ0-pi77ubu60dejvlaLzeRbc18V4H4_Sfk8nd6nW406xBoEwVgzcHgxi-zTZlvXWpt96byYY5aZRAQUjK23-jLWet5MDZf6DIBZVK8IK-_gvdhDlO5WgL1fLyACEKdb6n-hhSinY8RkTQSzX0Ug39qxpl4-XvlznyP7tQAHIAls2jHWK5jUaOakn8Yo9sUg7xyDCKUilY_vFqPx9N0GYdXdI3XxvAFspQCkXpdxMl0XY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616518077</pqid></control><display><type>article</type><title>Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Crocini, Claudia ; Coppini, Raffaele ; Ferrantini, Cecilia ; Yan, Ping ; Loew, Leslie M. ; Tesi, Chiara ; Cerbai, Elisabetta ; Poggesi, Corrado ; Pavone, Francesco S. ; Sacconi, Leonardo</creator><creatorcontrib>Crocini, Claudia ; Coppini, Raffaele ; Ferrantini, Cecilia ; Yan, Ping ; Loew, Leslie M. ; Tesi, Chiara ; Cerbai, Elisabetta ; Poggesi, Corrado ; Pavone, Francesco S. ; Sacconi, Leonardo</creatorcontrib><description>Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often based on attempts to accelerate Ca ²⁺ transients. Here, we demonstrate that T-tubular loss represents just one way by which T-tubule dysfunction leads to asynchronous Ca ²⁺ release across the myocyte. In fact, we report that defects in T-tubular electrical activity may contribute to Ca ²⁺-mediated arrhythmogenesis not only by favoring asynchronous Ca ²⁺ release, but also by generating voltage-associated Ca ²⁺ sparks. This work provides the first description to our knowledge of these novel proarrhythmogenic events that could help guide future therapeutic strategies. Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca ²⁺ release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca ²⁺ release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca ²⁺ release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca ²⁺ release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca ²⁺ transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca ²⁺ release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca ²⁺ release, resulting in Ca ²⁺ sparks. The occurrence of tubule-driven depolarizations and Ca ²⁺ sparks may contribute to the arrhythmic burden in heart failure.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1411557111</identifier><identifier>PMID: 25288764</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials - physiology ; Animals ; Biological Sciences ; Calcium ; Calcium - metabolism ; Calcium Signaling - physiology ; Cardiomyocytes ; Cells, Cultured ; Depolarization ; Dysrhythmias ; Electric potential ; Fluorescence ; Green Fluorescent Proteins - metabolism ; Heart ; Heart failure ; Heart Failure - metabolism ; Heart Ventricles - cytology ; Heart Ventricles - metabolism ; Kinetics ; Male ; Muscle Cells - cytology ; Myocardial Contraction - physiology ; Myocardium ; Myocytes, Cardiac - metabolism ; plasma membrane ; Rats ; Rats, Wistar ; Receptors ; Renovations ; Rodents ; Sarcoplasmic Reticulum - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15196-15201</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 21, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-4101558089b93dd4a9b261415b7d6124d371007ff584bd4f273b67bf3058c4bd3</citedby><cites>FETCH-LOGICAL-c558t-4101558089b93dd4a9b261415b7d6124d371007ff584bd4f273b67bf3058c4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43189901$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43189901$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crocini, Claudia</creatorcontrib><creatorcontrib>Coppini, Raffaele</creatorcontrib><creatorcontrib>Ferrantini, Cecilia</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><creatorcontrib>Loew, Leslie M.</creatorcontrib><creatorcontrib>Tesi, Chiara</creatorcontrib><creatorcontrib>Cerbai, Elisabetta</creatorcontrib><creatorcontrib>Poggesi, Corrado</creatorcontrib><creatorcontrib>Pavone, Francesco S.</creatorcontrib><creatorcontrib>Sacconi, Leonardo</creatorcontrib><title>Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often based on attempts to accelerate Ca ²⁺ transients. Here, we demonstrate that T-tubular loss represents just one way by which T-tubule dysfunction leads to asynchronous Ca ²⁺ release across the myocyte. In fact, we report that defects in T-tubular electrical activity may contribute to Ca ²⁺-mediated arrhythmogenesis not only by favoring asynchronous Ca ²⁺ release, but also by generating voltage-associated Ca ²⁺ sparks. This work provides the first description to our knowledge of these novel proarrhythmogenic events that could help guide future therapeutic strategies. Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca ²⁺ release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca ²⁺ release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca ²⁺ release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca ²⁺ release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca ²⁺ transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca ²⁺ release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca ²⁺ release, resulting in Ca ²⁺ sparks. The occurrence of tubule-driven depolarizations and Ca ²⁺ sparks may contribute to the arrhythmic burden in heart failure.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - physiology</subject><subject>Cardiomyocytes</subject><subject>Cells, Cultured</subject><subject>Depolarization</subject><subject>Dysrhythmias</subject><subject>Electric potential</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Heart</subject><subject>Heart failure</subject><subject>Heart Failure - metabolism</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - metabolism</subject><subject>Kinetics</subject><subject>Male</subject><subject>Muscle Cells - cytology</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocardium</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>plasma membrane</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors</subject><subject>Renovations</subject><subject>Rodents</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1v1DAQxSMEokvhzAmwxIVL2pnYju1LJVQ-pUocaM-Wkzhbr7zxYjuV-t_jsMvycYFTpDe_efEbvap6jnCGIOj5bjLpDBki5wIRH1QrBIV1yxQ8rFYAjagla9hJ9SSlDQAoLuFxddLwRkrRslW1fmdH2-dE3ESu6zx3szeRWF-06Hrjiemzu3P5nszTYKN3lvjwQ_fZRpNdmBIJIylS7-YtiWXVJLvY3VoTMxmN83O0T6tHo_HJPjt8T6ubD--vLz_VV18-fr58e1X3nMtcM4QSRYJUnaLDwIzqmrbk450YWmzYQAUCiHHkknUDGxtBu1Z0IwUu-6LQ0-pi77ubu60dejvlaLzeRbc18V4H4_Sfk8nd6nW406xBoEwVgzcHgxi-zTZlvXWpt96byYY5aZRAQUjK23-jLWet5MDZf6DIBZVK8IK-_gvdhDlO5WgL1fLyACEKdb6n-hhSinY8RkTQSzX0Ug39qxpl4-XvlznyP7tQAHIAls2jHWK5jUaOakn8Yo9sUg7xyDCKUilY_vFqPx9N0GYdXdI3XxvAFspQCkXpdxMl0XY</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Crocini, Claudia</creator><creator>Coppini, Raffaele</creator><creator>Ferrantini, Cecilia</creator><creator>Yan, Ping</creator><creator>Loew, Leslie M.</creator><creator>Tesi, Chiara</creator><creator>Cerbai, Elisabetta</creator><creator>Poggesi, Corrado</creator><creator>Pavone, Francesco S.</creator><creator>Sacconi, Leonardo</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141021</creationdate><title>Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure</title><author>Crocini, Claudia ; Coppini, Raffaele ; Ferrantini, Cecilia ; Yan, Ping ; Loew, Leslie M. ; Tesi, Chiara ; Cerbai, Elisabetta ; Poggesi, Corrado ; Pavone, Francesco S. ; Sacconi, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-4101558089b93dd4a9b261415b7d6124d371007ff584bd4f273b67bf3058c4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - physiology</topic><topic>Cardiomyocytes</topic><topic>Cells, Cultured</topic><topic>Depolarization</topic><topic>Dysrhythmias</topic><topic>Electric potential</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Heart</topic><topic>Heart failure</topic><topic>Heart Failure - metabolism</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - metabolism</topic><topic>Kinetics</topic><topic>Male</topic><topic>Muscle Cells - cytology</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocardium</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>plasma membrane</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors</topic><topic>Renovations</topic><topic>Rodents</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crocini, Claudia</creatorcontrib><creatorcontrib>Coppini, Raffaele</creatorcontrib><creatorcontrib>Ferrantini, Cecilia</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><creatorcontrib>Loew, Leslie M.</creatorcontrib><creatorcontrib>Tesi, Chiara</creatorcontrib><creatorcontrib>Cerbai, Elisabetta</creatorcontrib><creatorcontrib>Poggesi, Corrado</creatorcontrib><creatorcontrib>Pavone, Francesco S.</creatorcontrib><creatorcontrib>Sacconi, Leonardo</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crocini, Claudia</au><au>Coppini, Raffaele</au><au>Ferrantini, Cecilia</au><au>Yan, Ping</au><au>Loew, Leslie M.</au><au>Tesi, Chiara</au><au>Cerbai, Elisabetta</au><au>Poggesi, Corrado</au><au>Pavone, Francesco S.</au><au>Sacconi, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>111</volume><issue>42</issue><spage>15196</spage><epage>15201</epage><pages>15196-15201</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance The plasma membrane of cardiac myocytes contains complex invaginations known as transverse tubules (T-tubules). In heart failure, T-tubule loss is a major contributor to Ca ²⁺ transient abnormalities, leading to weaker and slower contraction. Current therapeutic strategies are often based on attempts to accelerate Ca ²⁺ transients. Here, we demonstrate that T-tubular loss represents just one way by which T-tubule dysfunction leads to asynchronous Ca ²⁺ release across the myocyte. In fact, we report that defects in T-tubular electrical activity may contribute to Ca ²⁺-mediated arrhythmogenesis not only by favoring asynchronous Ca ²⁺ release, but also by generating voltage-associated Ca ²⁺ sparks. This work provides the first description to our knowledge of these novel proarrhythmogenic events that could help guide future therapeutic strategies. Action potentials (APs), via the transverse axial tubular system (TATS), synchronously trigger uniform Ca ²⁺ release throughout the cardiomyocyte. In heart failure (HF), TATS structural remodeling occurs, leading to asynchronous Ca ²⁺ release across the myocyte and contributing to contractile dysfunction. In cardiomyocytes from failing rat hearts, we previously documented the presence of TATS elements which failed to propagate AP and displayed spontaneous electrical activity; the consequence for Ca ²⁺ release remained, however, unsolved. Here, we develop an imaging method to simultaneously assess TATS electrical activity and local Ca ²⁺ release. In HF cardiomyocytes, sites where T-tubules fail to conduct AP show a slower and reduced local Ca ²⁺ transient compared with regions with electrically coupled elements. It is concluded that TATS electrical remodeling is a major determinant of altered kinetics, amplitude, and homogeneity of Ca ²⁺ release in HF. Moreover, spontaneous depolarization events occurring in failing T-tubules can trigger local Ca ²⁺ release, resulting in Ca ²⁺ sparks. The occurrence of tubule-driven depolarizations and Ca ²⁺ sparks may contribute to the arrhythmic burden in heart failure.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25288764</pmid><doi>10.1073/pnas.1411557111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15196-15201
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1654685054
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Action Potentials - physiology
Animals
Biological Sciences
Calcium
Calcium - metabolism
Calcium Signaling - physiology
Cardiomyocytes
Cells, Cultured
Depolarization
Dysrhythmias
Electric potential
Fluorescence
Green Fluorescent Proteins - metabolism
Heart
Heart failure
Heart Failure - metabolism
Heart Ventricles - cytology
Heart Ventricles - metabolism
Kinetics
Male
Muscle Cells - cytology
Myocardial Contraction - physiology
Myocardium
Myocytes, Cardiac - metabolism
plasma membrane
Rats
Rats, Wistar
Receptors
Renovations
Rodents
Sarcoplasmic Reticulum - metabolism
title Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20in%20T-tubular%20electrical%20activity%20underlie%20local%20alterations%20of%20calcium%20release%20in%20heart%20failure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Crocini,%20Claudia&rft.date=2014-10-21&rft.volume=111&rft.issue=42&rft.spage=15196&rft.epage=15201&rft.pages=15196-15201&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1411557111&rft_dat=%3Cjstor_proqu%3E43189901%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1616518077&rft_id=info:pmid/25288764&rft_jstor_id=43189901&rfr_iscdi=true