The strongly conserved carboxyl‐terminus glycine‐methionine motif of the Escherichia coli GroEL chaperonin is dispensable
Summary The universally distributed heat‐shock proteins (HSPs) are divided into classes based on molecular weight and sequence conservation. The members of at least two of these classes, the HSP60s and the HSP70S, have chaperone activity. Most HSP60s and many HSP70s feature a striking motif at or ne...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 1993-01, Vol.7 (1), p.49-58 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Molecular microbiology |
container_volume | 7 |
creator | McLennan, N. F. Girshovich, A. S. Lissin, N. M. Charters, Y. Masters, M. |
description | Summary
The universally distributed heat‐shock proteins (HSPs) are divided into classes based on molecular weight and sequence conservation. The members of at least two of these classes, the HSP60s and the HSP70S, have chaperone activity. Most HSP60s and many HSP70s feature a striking motif at or near the carboxyl terminus which consists of a string of repeated glycine and methionine residues. We have altered the groEL gene (encoding the essential Escherichia coli HSP60 chaperonin) so that the protein produced lacks its 16 final (including nine gly, and five met) residues. This truncated product behaves like the intact protein in several in vitro tests, the only discernible difference between the two proteins being in the rate at which ATP is hydrolysed. GroELtr can substitute for GroEL in vivo although cells dependent for survival on the truncated protein survive slightly less well during the stationary phase of growth. Elevated levels of the wild‐type protein can suppress a number of temperature‐sensitive mutations; the truncated protein lacks this ability. |
doi_str_mv | 10.1111/j.1365-2958.1993.tb01096.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16539160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16539160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4949-72592c71c85149724af2b527879c179413905cef885fa38e0a69d983e963ecb23</originalsourceid><addsrcrecordid>eNqVkNGK1DAUhoMo67j6CEIQ8a41aZo2R_BClnFdmMWbFbwLaebUZmibMenozIXgI_iMPokpU-be3ITkfOc_yUfIK85yntbbXc5FJbMCpMo5gMinhnEGVX58RFaX0mOyYiBZJlTx9Sl5FuOOMS5YJa7IlWJQqhpW5NdDhzROwY_f-hO1fowYfuCWWhMafzz1f3__mTAMbjxEmgjrRkxXA06d82M60MFPrqW-pVMKWkfbYXC2cyZl9Y7eBr_eUNuZPYaZpy7SrYt7HKNpenxOnrSmj_hi2a_Jl4_rh5tP2ebz7d3Nh01mSyghqwsJha25VZKXUBelaYtGFnX6geU1lFwAkxZbpWRrhEJmKtiCEgiVQNsU4pq8Oefug_9-wDjpwUWLfW9G9IeoeSUF8Iol8N0ZtMHHGLDV--AGE06aMz271zs9C9azYD2714t7fUzNL5cph2bA7aV1kZ3qr5e6idb0bTCjdfGClVJJqeqEvT9jP12Pp_94gL6_vytB_AP0pqSm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16539160</pqid></control><display><type>article</type><title>The strongly conserved carboxyl‐terminus glycine‐methionine motif of the Escherichia coli GroEL chaperonin is dispensable</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>McLennan, N. F. ; Girshovich, A. S. ; Lissin, N. M. ; Charters, Y. ; Masters, M.</creator><creatorcontrib>McLennan, N. F. ; Girshovich, A. S. ; Lissin, N. M. ; Charters, Y. ; Masters, M.</creatorcontrib><description>Summary
The universally distributed heat‐shock proteins (HSPs) are divided into classes based on molecular weight and sequence conservation. The members of at least two of these classes, the HSP60s and the HSP70S, have chaperone activity. Most HSP60s and many HSP70s feature a striking motif at or near the carboxyl terminus which consists of a string of repeated glycine and methionine residues. We have altered the groEL gene (encoding the essential Escherichia coli HSP60 chaperonin) so that the protein produced lacks its 16 final (including nine gly, and five met) residues. This truncated product behaves like the intact protein in several in vitro tests, the only discernible difference between the two proteins being in the rate at which ATP is hydrolysed. GroELtr can substitute for GroEL in vivo although cells dependent for survival on the truncated protein survive slightly less well during the stationary phase of growth. Elevated levels of the wild‐type protein can suppress a number of temperature‐sensitive mutations; the truncated protein lacks this ability.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.1993.tb01096.x</identifier><identifier>PMID: 8094879</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - genetics ; Bacteriology ; Base Sequence ; Biological and medical sciences ; Chaperonin 60 ; Escherichia coli ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - genetics ; Genes, Bacterial ; Heat-Shock Proteins - genetics ; Humans ; Microbiology ; Miscellaneous ; Molecular Sequence Data ; Mutagenesis ; Phenotype ; Sequence Homology, Amino Acid</subject><ispartof>Molecular microbiology, 1993-01, Vol.7 (1), p.49-58</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4949-72592c71c85149724af2b527879c179413905cef885fa38e0a69d983e963ecb23</citedby><cites>FETCH-LOGICAL-c4949-72592c71c85149724af2b527879c179413905cef885fa38e0a69d983e963ecb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.1993.tb01096.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.1993.tb01096.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,4012,27906,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4585587$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8094879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLennan, N. F.</creatorcontrib><creatorcontrib>Girshovich, A. S.</creatorcontrib><creatorcontrib>Lissin, N. M.</creatorcontrib><creatorcontrib>Charters, Y.</creatorcontrib><creatorcontrib>Masters, M.</creatorcontrib><title>The strongly conserved carboxyl‐terminus glycine‐methionine motif of the Escherichia coli GroEL chaperonin is dispensable</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
The universally distributed heat‐shock proteins (HSPs) are divided into classes based on molecular weight and sequence conservation. The members of at least two of these classes, the HSP60s and the HSP70S, have chaperone activity. Most HSP60s and many HSP70s feature a striking motif at or near the carboxyl terminus which consists of a string of repeated glycine and methionine residues. We have altered the groEL gene (encoding the essential Escherichia coli HSP60 chaperonin) so that the protein produced lacks its 16 final (including nine gly, and five met) residues. This truncated product behaves like the intact protein in several in vitro tests, the only discernible difference between the two proteins being in the rate at which ATP is hydrolysed. GroELtr can substitute for GroEL in vivo although cells dependent for survival on the truncated protein survive slightly less well during the stationary phase of growth. Elevated levels of the wild‐type protein can suppress a number of temperature‐sensitive mutations; the truncated protein lacks this ability.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Chaperonin 60</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - genetics</subject><subject>Genes, Bacterial</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Humans</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Phenotype</subject><subject>Sequence Homology, Amino Acid</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkNGK1DAUhoMo67j6CEIQ8a41aZo2R_BClnFdmMWbFbwLaebUZmibMenozIXgI_iMPokpU-be3ITkfOc_yUfIK85yntbbXc5FJbMCpMo5gMinhnEGVX58RFaX0mOyYiBZJlTx9Sl5FuOOMS5YJa7IlWJQqhpW5NdDhzROwY_f-hO1fowYfuCWWhMafzz1f3__mTAMbjxEmgjrRkxXA06d82M60MFPrqW-pVMKWkfbYXC2cyZl9Y7eBr_eUNuZPYaZpy7SrYt7HKNpenxOnrSmj_hi2a_Jl4_rh5tP2ebz7d3Nh01mSyghqwsJha25VZKXUBelaYtGFnX6geU1lFwAkxZbpWRrhEJmKtiCEgiVQNsU4pq8Oefug_9-wDjpwUWLfW9G9IeoeSUF8Iol8N0ZtMHHGLDV--AGE06aMz271zs9C9azYD2714t7fUzNL5cph2bA7aV1kZ3qr5e6idb0bTCjdfGClVJJqeqEvT9jP12Pp_94gL6_vytB_AP0pqSm</recordid><startdate>199301</startdate><enddate>199301</enddate><creator>McLennan, N. F.</creator><creator>Girshovich, A. S.</creator><creator>Lissin, N. M.</creator><creator>Charters, Y.</creator><creator>Masters, M.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>199301</creationdate><title>The strongly conserved carboxyl‐terminus glycine‐methionine motif of the Escherichia coli GroEL chaperonin is dispensable</title><author>McLennan, N. F. ; Girshovich, A. S. ; Lissin, N. M. ; Charters, Y. ; Masters, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4949-72592c71c85149724af2b527879c179413905cef885fa38e0a69d983e963ecb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Chaperonin 60</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - genetics</topic><topic>Genes, Bacterial</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Humans</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Phenotype</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLennan, N. F.</creatorcontrib><creatorcontrib>Girshovich, A. S.</creatorcontrib><creatorcontrib>Lissin, N. M.</creatorcontrib><creatorcontrib>Charters, Y.</creatorcontrib><creatorcontrib>Masters, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLennan, N. F.</au><au>Girshovich, A. S.</au><au>Lissin, N. M.</au><au>Charters, Y.</au><au>Masters, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The strongly conserved carboxyl‐terminus glycine‐methionine motif of the Escherichia coli GroEL chaperonin is dispensable</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>1993-01</date><risdate>1993</risdate><volume>7</volume><issue>1</issue><spage>49</spage><epage>58</epage><pages>49-58</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
The universally distributed heat‐shock proteins (HSPs) are divided into classes based on molecular weight and sequence conservation. The members of at least two of these classes, the HSP60s and the HSP70S, have chaperone activity. Most HSP60s and many HSP70s feature a striking motif at or near the carboxyl terminus which consists of a string of repeated glycine and methionine residues. We have altered the groEL gene (encoding the essential Escherichia coli HSP60 chaperonin) so that the protein produced lacks its 16 final (including nine gly, and five met) residues. This truncated product behaves like the intact protein in several in vitro tests, the only discernible difference between the two proteins being in the rate at which ATP is hydrolysed. GroELtr can substitute for GroEL in vivo although cells dependent for survival on the truncated protein survive slightly less well during the stationary phase of growth. Elevated levels of the wild‐type protein can suppress a number of temperature‐sensitive mutations; the truncated protein lacks this ability.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>8094879</pmid><doi>10.1111/j.1365-2958.1993.tb01096.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 1993-01, Vol.7 (1), p.49-58 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_16539160 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amino Acid Sequence Bacterial Proteins - genetics Bacteriology Base Sequence Biological and medical sciences Chaperonin 60 Escherichia coli Escherichia coli - genetics Fundamental and applied biological sciences. Psychology Fungal Proteins - genetics Genes, Bacterial Heat-Shock Proteins - genetics Humans Microbiology Miscellaneous Molecular Sequence Data Mutagenesis Phenotype Sequence Homology, Amino Acid |
title | The strongly conserved carboxyl‐terminus glycine‐methionine motif of the Escherichia coli GroEL chaperonin is dispensable |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20strongly%20conserved%20carboxyl%E2%80%90terminus%20glycine%E2%80%90methionine%20motif%20of%20the%20Escherichia%20coli%20GroEL%20chaperonin%20is%20dispensable&rft.jtitle=Molecular%20microbiology&rft.au=McLennan,%20N.%20F.&rft.date=1993-01&rft.volume=7&rft.issue=1&rft.spage=49&rft.epage=58&rft.pages=49-58&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.1993.tb01096.x&rft_dat=%3Cproquest_cross%3E16539160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16539160&rft_id=info:pmid/8094879&rfr_iscdi=true |