Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3-D X-ray CT

Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2015-02, Vol.34 (2), p.678-689
Hauptverfasser: Cho, Jang Hwan, Fessler, Jeffrey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 2
container_start_page 678
container_title IEEE transactions on medical imaging
container_volume 34
creator Cho, Jang Hwan
Fessler, Jeffrey A.
description Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3-D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3-D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT.
doi_str_mv 10.1109/TMI.2014.2365179
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652458762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6937169</ieee_id><sourcerecordid>1652458762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-a440732d3540c86daad1141a33d646c293dfcd3c2dfb208be1eaaab5b79387853</originalsourceid><addsrcrecordid>eNo9kElPwzAQRi0EgrLckZCQj1xSvMROckRlq8SmtkjcIseeVEZJXOzkABf-Oi4tXGYO875Po4fQKSVjSklxuXicjhmh6ZhxKWhW7KARFSJPmEjfdtGIsCxPCJHsAB2G8E4iKUixjw6Y4JIKQkboewbLoVHefqneug5fQ7DLLuDaefza2bhaPF_Fm2rwDIJrhl9MdQY_ORsAv3i3At9bCNh2eN5HNPRWR3zaqiXEkHZd6P2gf4PrXp5c47fEq088WRyjvVo1AU62-wi93t4sJvfJw_PddHL1kOj4aZ-oNCUZZ4aLlOhcGqUMpSlVnBuZSs0KbmptuGamrhjJK6CglKpElRU8z3LBj9DFpnfl3ccAoS9bGzQ0jerADaGkUrBU5JlkESUbVHsXgoe6XHnbKv9ZUlKutZdRe7nWXm61x8j5tn2oWjD_gT_PETjbABYA_s-y4BmN4wdBX4ex</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652458762</pqid></control><display><type>article</type><title>Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3-D X-ray CT</title><source>IEEE Electronic Library (IEL)</source><creator>Cho, Jang Hwan ; Fessler, Jeffrey A.</creator><creatorcontrib>Cho, Jang Hwan ; Fessler, Jeffrey A.</creatorcontrib><description>Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3-D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3-D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2014.2365179</identifier><identifier>PMID: 25361500</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Approximation methods ; Computed tomography ; Computer Simulation ; Cone-beam tomography ; Geometry ; Humans ; Image reconstruction ; Imaging, Three-Dimensional - methods ; iterative reconstruction ; model-based image reconstruction ; Models, Statistical ; Noise ; Phantoms, Imaging ; regularization ; Spatial resolution ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE transactions on medical imaging, 2015-02, Vol.34 (2), p.678-689</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-a440732d3540c86daad1141a33d646c293dfcd3c2dfb208be1eaaab5b79387853</citedby><cites>FETCH-LOGICAL-c361t-a440732d3540c86daad1141a33d646c293dfcd3c2dfb208be1eaaab5b79387853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6937169$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6937169$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25361500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Jang Hwan</creatorcontrib><creatorcontrib>Fessler, Jeffrey A.</creatorcontrib><title>Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3-D X-ray CT</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3-D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3-D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT.</description><subject>Approximation methods</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>Cone-beam tomography</subject><subject>Geometry</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>iterative reconstruction</subject><subject>model-based image reconstruction</subject><subject>Models, Statistical</subject><subject>Noise</subject><subject>Phantoms, Imaging</subject><subject>regularization</subject><subject>Spatial resolution</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kElPwzAQRi0EgrLckZCQj1xSvMROckRlq8SmtkjcIseeVEZJXOzkABf-Oi4tXGYO875Po4fQKSVjSklxuXicjhmh6ZhxKWhW7KARFSJPmEjfdtGIsCxPCJHsAB2G8E4iKUixjw6Y4JIKQkboewbLoVHefqneug5fQ7DLLuDaefza2bhaPF_Fm2rwDIJrhl9MdQY_ORsAv3i3At9bCNh2eN5HNPRWR3zaqiXEkHZd6P2gf4PrXp5c47fEq088WRyjvVo1AU62-wi93t4sJvfJw_PddHL1kOj4aZ-oNCUZZ4aLlOhcGqUMpSlVnBuZSs0KbmptuGamrhjJK6CglKpElRU8z3LBj9DFpnfl3ccAoS9bGzQ0jerADaGkUrBU5JlkESUbVHsXgoe6XHnbKv9ZUlKutZdRe7nWXm61x8j5tn2oWjD_gT_PETjbABYA_s-y4BmN4wdBX4ex</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Cho, Jang Hwan</creator><creator>Fessler, Jeffrey A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201502</creationdate><title>Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3-D X-ray CT</title><author>Cho, Jang Hwan ; Fessler, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-a440732d3540c86daad1141a33d646c293dfcd3c2dfb208be1eaaab5b79387853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation methods</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>Cone-beam tomography</topic><topic>Geometry</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>iterative reconstruction</topic><topic>model-based image reconstruction</topic><topic>Models, Statistical</topic><topic>Noise</topic><topic>Phantoms, Imaging</topic><topic>regularization</topic><topic>Spatial resolution</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Jang Hwan</creatorcontrib><creatorcontrib>Fessler, Jeffrey A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Jang Hwan</au><au>Fessler, Jeffrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3-D X-ray CT</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-02</date><risdate>2015</risdate><volume>34</volume><issue>2</issue><spage>678</spage><epage>689</epage><pages>678-689</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3-D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3-D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25361500</pmid><doi>10.1109/TMI.2014.2365179</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2015-02, Vol.34 (2), p.678-689
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_1652458762
source IEEE Electronic Library (IEL)
subjects Approximation methods
Computed tomography
Computer Simulation
Cone-beam tomography
Geometry
Humans
Image reconstruction
Imaging, Three-Dimensional - methods
iterative reconstruction
model-based image reconstruction
Models, Statistical
Noise
Phantoms, Imaging
regularization
Spatial resolution
Tomography, X-Ray Computed - methods
title Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3-D X-ray CT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularization%20Designs%20for%20Uniform%20Spatial%20Resolution%20and%20Noise%20Properties%20in%20Statistical%20Image%20Reconstruction%20for%203-D%20X-ray%20CT&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Cho,%20Jang%20Hwan&rft.date=2015-02&rft.volume=34&rft.issue=2&rft.spage=678&rft.epage=689&rft.pages=678-689&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2014.2365179&rft_dat=%3Cproquest_RIE%3E1652458762%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652458762&rft_id=info:pmid/25361500&rft_ieee_id=6937169&rfr_iscdi=true