Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA
Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through th...
Gespeichert in:
Veröffentlicht in: | J. Am. Chem. Soc 2015-02, Vol.137 (4), p.1658-1662 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1662 |
---|---|
container_issue | 4 |
container_start_page | 1658 |
container_title | J. Am. Chem. Soc |
container_volume | 137 |
creator | Auyeung, Evelyn Morris, William Mondloch, Joseph E Hupp, Joseph T Farha, Omar K Mirkin, Chad A |
description | Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m2/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings. |
doi_str_mv | 10.1021/ja512116p |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652439750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652439750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-325890868cfcb73b200b53b9aeb0e6e60e9e1ff0774025a4397fd5f10ad31cc33</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWh8L_4AEQdDFaB6TzHQp9QlSheo6ZNI7mjJNxiSD9N-bUnXl6t4DHwfOh9AxJZeUMHq10IIySmW_hUZUMFLkKLfRiBDCiqqWfA_tx7jIsWQ13UV7TEhKK1mO0GziXQq-66x7x7MUBpOGAFi7OX7xwUebVtg6PNFJd6tkDZ5q53sd8tsBng09hE6nnCDiL5s-8M30-hDttLqLcPRzD9Db3e3r5KF4er5_nFw_FZpXVSo4E_WY1LI2rWkq3jBCGsGbsYaGgARJYAy0bUlVlYQJXfJx1c5FS4mec2oM5wfodNPrY7IqGpvAfBjvHJik8j5W0jpD5xuoD_5zgJjU0kYDXacd-CEqKgVbVwuS0YsNavLwGKBVfbBLHVaKErUWrf5EZ_bkp3ZoljD_I3_NZuBsA2gT1cIPwWUV_xR9AxvWg88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652439750</pqid></control><display><type>article</type><title>Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA</title><source>MEDLINE</source><source>ACS Publications</source><creator>Auyeung, Evelyn ; Morris, William ; Mondloch, Joseph E ; Hupp, Joseph T ; Farha, Omar K ; Mirkin, Chad A</creator><creatorcontrib>Auyeung, Evelyn ; Morris, William ; Mondloch, Joseph E ; Hupp, Joseph T ; Farha, Omar K ; Mirkin, Chad A ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m2/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja512116p</identifier><identifier>PMID: 25611764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Benzyl Alcohols - chemistry ; Catalysis ; DNA - chemistry ; Gold - chemistry ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanotechnology ; Oxidation-Reduction ; Porosity ; Silicon Dioxide - chemistry</subject><ispartof>J. Am. Chem. Soc, 2015-02, Vol.137 (4), p.1658-1662</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-325890868cfcb73b200b53b9aeb0e6e60e9e1ff0774025a4397fd5f10ad31cc33</citedby><cites>FETCH-LOGICAL-a377t-325890868cfcb73b200b53b9aeb0e6e60e9e1ff0774025a4397fd5f10ad31cc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja512116p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja512116p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25611764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1172418$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Auyeung, Evelyn</creatorcontrib><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Mondloch, Joseph E</creatorcontrib><creatorcontrib>Hupp, Joseph T</creatorcontrib><creatorcontrib>Farha, Omar K</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA</title><title>J. Am. Chem. Soc</title><addtitle>J. Am. Chem. Soc</addtitle><description>Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m2/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.</description><subject>Benzyl Alcohols - chemistry</subject><subject>Catalysis</subject><subject>DNA - chemistry</subject><subject>Gold - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanotechnology</subject><subject>Oxidation-Reduction</subject><subject>Porosity</subject><subject>Silicon Dioxide - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtLAzEUhYMoWh8L_4AEQdDFaB6TzHQp9QlSheo6ZNI7mjJNxiSD9N-bUnXl6t4DHwfOh9AxJZeUMHq10IIySmW_hUZUMFLkKLfRiBDCiqqWfA_tx7jIsWQ13UV7TEhKK1mO0GziXQq-66x7x7MUBpOGAFi7OX7xwUebVtg6PNFJd6tkDZ5q53sd8tsBng09hE6nnCDiL5s-8M30-hDttLqLcPRzD9Db3e3r5KF4er5_nFw_FZpXVSo4E_WY1LI2rWkq3jBCGsGbsYaGgARJYAy0bUlVlYQJXfJx1c5FS4mec2oM5wfodNPrY7IqGpvAfBjvHJik8j5W0jpD5xuoD_5zgJjU0kYDXacd-CEqKgVbVwuS0YsNavLwGKBVfbBLHVaKErUWrf5EZ_bkp3ZoljD_I3_NZuBsA2gT1cIPwWUV_xR9AxvWg88</recordid><startdate>20150204</startdate><enddate>20150204</enddate><creator>Auyeung, Evelyn</creator><creator>Morris, William</creator><creator>Mondloch, Joseph E</creator><creator>Hupp, Joseph T</creator><creator>Farha, Omar K</creator><creator>Mirkin, Chad A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150204</creationdate><title>Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA</title><author>Auyeung, Evelyn ; Morris, William ; Mondloch, Joseph E ; Hupp, Joseph T ; Farha, Omar K ; Mirkin, Chad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-325890868cfcb73b200b53b9aeb0e6e60e9e1ff0774025a4397fd5f10ad31cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benzyl Alcohols - chemistry</topic><topic>Catalysis</topic><topic>DNA - chemistry</topic><topic>Gold - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanotechnology</topic><topic>Oxidation-Reduction</topic><topic>Porosity</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auyeung, Evelyn</creatorcontrib><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Mondloch, Joseph E</creatorcontrib><creatorcontrib>Hupp, Joseph T</creatorcontrib><creatorcontrib>Farha, Omar K</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>J. Am. Chem. Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auyeung, Evelyn</au><au>Morris, William</au><au>Mondloch, Joseph E</au><au>Hupp, Joseph T</au><au>Farha, Omar K</au><au>Mirkin, Chad A</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA</atitle><jtitle>J. Am. Chem. Soc</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-02-04</date><risdate>2015</risdate><volume>137</volume><issue>4</issue><spage>1658</spage><epage>1662</epage><pages>1658-1662</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m2/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25611764</pmid><doi>10.1021/ja512116p</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | J. Am. Chem. Soc, 2015-02, Vol.137 (4), p.1658-1662 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1652439750 |
source | MEDLINE; ACS Publications |
subjects | Benzyl Alcohols - chemistry Catalysis DNA - chemistry Gold - chemistry Nanoparticles - chemistry Nanoparticles - ultrastructure Nanotechnology Oxidation-Reduction Porosity Silicon Dioxide - chemistry |
title | Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Structure%20and%20Porosity%20in%20Catalytic%20Nanoparticle%20Superlattices%20with%20DNA&rft.jtitle=J.%20Am.%20Chem.%20Soc&rft.au=Auyeung,%20Evelyn&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2015-02-04&rft.volume=137&rft.issue=4&rft.spage=1658&rft.epage=1662&rft.pages=1658-1662&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja512116p&rft_dat=%3Cproquest_osti_%3E1652439750%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652439750&rft_id=info:pmid/25611764&rfr_iscdi=true |