Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA

Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Am. Chem. Soc 2015-02, Vol.137 (4), p.1658-1662
Hauptverfasser: Auyeung, Evelyn, Morris, William, Mondloch, Joseph E, Hupp, Joseph T, Farha, Omar K, Mirkin, Chad A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1662
container_issue 4
container_start_page 1658
container_title J. Am. Chem. Soc
container_volume 137
creator Auyeung, Evelyn
Morris, William
Mondloch, Joseph E
Hupp, Joseph T
Farha, Omar K
Mirkin, Chad A
description Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m2/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.
doi_str_mv 10.1021/ja512116p
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652439750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652439750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-325890868cfcb73b200b53b9aeb0e6e60e9e1ff0774025a4397fd5f10ad31cc33</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWh8L_4AEQdDFaB6TzHQp9QlSheo6ZNI7mjJNxiSD9N-bUnXl6t4DHwfOh9AxJZeUMHq10IIySmW_hUZUMFLkKLfRiBDCiqqWfA_tx7jIsWQ13UV7TEhKK1mO0GziXQq-66x7x7MUBpOGAFi7OX7xwUebVtg6PNFJd6tkDZ5q53sd8tsBng09hE6nnCDiL5s-8M30-hDttLqLcPRzD9Db3e3r5KF4er5_nFw_FZpXVSo4E_WY1LI2rWkq3jBCGsGbsYaGgARJYAy0bUlVlYQJXfJx1c5FS4mec2oM5wfodNPrY7IqGpvAfBjvHJik8j5W0jpD5xuoD_5zgJjU0kYDXacd-CEqKgVbVwuS0YsNavLwGKBVfbBLHVaKErUWrf5EZ_bkp3ZoljD_I3_NZuBsA2gT1cIPwWUV_xR9AxvWg88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652439750</pqid></control><display><type>article</type><title>Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA</title><source>MEDLINE</source><source>ACS Publications</source><creator>Auyeung, Evelyn ; Morris, William ; Mondloch, Joseph E ; Hupp, Joseph T ; Farha, Omar K ; Mirkin, Chad A</creator><creatorcontrib>Auyeung, Evelyn ; Morris, William ; Mondloch, Joseph E ; Hupp, Joseph T ; Farha, Omar K ; Mirkin, Chad A ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m2/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja512116p</identifier><identifier>PMID: 25611764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Benzyl Alcohols - chemistry ; Catalysis ; DNA - chemistry ; Gold - chemistry ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanotechnology ; Oxidation-Reduction ; Porosity ; Silicon Dioxide - chemistry</subject><ispartof>J. Am. Chem. Soc, 2015-02, Vol.137 (4), p.1658-1662</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-325890868cfcb73b200b53b9aeb0e6e60e9e1ff0774025a4397fd5f10ad31cc33</citedby><cites>FETCH-LOGICAL-a377t-325890868cfcb73b200b53b9aeb0e6e60e9e1ff0774025a4397fd5f10ad31cc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja512116p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja512116p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25611764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1172418$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Auyeung, Evelyn</creatorcontrib><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Mondloch, Joseph E</creatorcontrib><creatorcontrib>Hupp, Joseph T</creatorcontrib><creatorcontrib>Farha, Omar K</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA</title><title>J. Am. Chem. Soc</title><addtitle>J. Am. Chem. Soc</addtitle><description>Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m2/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.</description><subject>Benzyl Alcohols - chemistry</subject><subject>Catalysis</subject><subject>DNA - chemistry</subject><subject>Gold - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanotechnology</subject><subject>Oxidation-Reduction</subject><subject>Porosity</subject><subject>Silicon Dioxide - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtLAzEUhYMoWh8L_4AEQdDFaB6TzHQp9QlSheo6ZNI7mjJNxiSD9N-bUnXl6t4DHwfOh9AxJZeUMHq10IIySmW_hUZUMFLkKLfRiBDCiqqWfA_tx7jIsWQ13UV7TEhKK1mO0GziXQq-66x7x7MUBpOGAFi7OX7xwUebVtg6PNFJd6tkDZ5q53sd8tsBng09hE6nnCDiL5s-8M30-hDttLqLcPRzD9Db3e3r5KF4er5_nFw_FZpXVSo4E_WY1LI2rWkq3jBCGsGbsYaGgARJYAy0bUlVlYQJXfJx1c5FS4mec2oM5wfodNPrY7IqGpvAfBjvHJik8j5W0jpD5xuoD_5zgJjU0kYDXacd-CEqKgVbVwuS0YsNavLwGKBVfbBLHVaKErUWrf5EZ_bkp3ZoljD_I3_NZuBsA2gT1cIPwWUV_xR9AxvWg88</recordid><startdate>20150204</startdate><enddate>20150204</enddate><creator>Auyeung, Evelyn</creator><creator>Morris, William</creator><creator>Mondloch, Joseph E</creator><creator>Hupp, Joseph T</creator><creator>Farha, Omar K</creator><creator>Mirkin, Chad A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150204</creationdate><title>Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA</title><author>Auyeung, Evelyn ; Morris, William ; Mondloch, Joseph E ; Hupp, Joseph T ; Farha, Omar K ; Mirkin, Chad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-325890868cfcb73b200b53b9aeb0e6e60e9e1ff0774025a4397fd5f10ad31cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benzyl Alcohols - chemistry</topic><topic>Catalysis</topic><topic>DNA - chemistry</topic><topic>Gold - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanotechnology</topic><topic>Oxidation-Reduction</topic><topic>Porosity</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auyeung, Evelyn</creatorcontrib><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Mondloch, Joseph E</creatorcontrib><creatorcontrib>Hupp, Joseph T</creatorcontrib><creatorcontrib>Farha, Omar K</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>J. Am. Chem. Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auyeung, Evelyn</au><au>Morris, William</au><au>Mondloch, Joseph E</au><au>Hupp, Joseph T</au><au>Farha, Omar K</au><au>Mirkin, Chad A</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA</atitle><jtitle>J. Am. Chem. Soc</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-02-04</date><risdate>2015</risdate><volume>137</volume><issue>4</issue><spage>1658</spage><epage>1662</epage><pages>1658-1662</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m2/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25611764</pmid><doi>10.1021/ja512116p</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof J. Am. Chem. Soc, 2015-02, Vol.137 (4), p.1658-1662
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1652439750
source MEDLINE; ACS Publications
subjects Benzyl Alcohols - chemistry
Catalysis
DNA - chemistry
Gold - chemistry
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanotechnology
Oxidation-Reduction
Porosity
Silicon Dioxide - chemistry
title Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Structure%20and%20Porosity%20in%20Catalytic%20Nanoparticle%20Superlattices%20with%20DNA&rft.jtitle=J.%20Am.%20Chem.%20Soc&rft.au=Auyeung,%20Evelyn&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2015-02-04&rft.volume=137&rft.issue=4&rft.spage=1658&rft.epage=1662&rft.pages=1658-1662&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja512116p&rft_dat=%3Cproquest_osti_%3E1652439750%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652439750&rft_id=info:pmid/25611764&rfr_iscdi=true