Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS2

A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-01, Vol.9 (1), p.840-849
Hauptverfasser: Yamaguchi, Hisato, Blancon, Jean-Christophe, Kappera, Rajesh, Lei, Sidong, Najmaei, Sina, Mangum, Benjamin D, Gupta, Gautam, Ajayan, Pulickel M, Lou, Jun, Chhowalla, Manish, Crochet, Jared J, Mohite, Aditya D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue 1
container_start_page 840
container_title ACS nano
container_volume 9
creator Yamaguchi, Hisato
Blancon, Jean-Christophe
Kappera, Rajesh
Lei, Sidong
Najmaei, Sina
Mangum, Benjamin D
Gupta, Gautam
Ajayan, Pulickel M
Lou, Jun
Chhowalla, Manish
Crochet, Jared J
Mohite, Aditya D
description A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photoexcitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed toward the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are a few millielectron volts for 1T- and ∼200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photoresponsivity by more than 1 order of magnitude, a crucial parameter in achieving high-performance optoelectronic devices. The obtained results pave a way for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where ohmic contacts are necessary for achieving high-efficiency devices with low power consumption.
doi_str_mv 10.1021/nn506469v
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652422464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652422464</sourcerecordid><originalsourceid>FETCH-LOGICAL-a257v-9cbdbaa7f771c0bdaedf255cab8a01ec1f3287c6de0cd189aff25d6e30f406993</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuBFFFurB_-A5CJ4ie5ukk1ylFg_oEWxCuIlTDaTNiXZrbtJMf_elVZPM8M8DMNLyDmj14xydqNUREUo0u0BGbM0ED5NxMfhfx-xETmxdk1pFCexOCYjHkWccUbH5HOxga6Gphm8V7S62WLpvax0p_Fb1p0bshWYJfoZGFOj8e4GBW0trVcr58CiP1XLWiEaZ-da6QYGx-Z6wU_JUQWNxbN9nZD3--lb9ujPnh-estuZDzyKt34qi7IAiKs4ZpIWJWBZuf8kFAlQhpJVAU9iKUqksmRJCpVblwIDWoVUpGkwIVe7uxujv3q0Xd7WVmLTgELd25yJiIechyJ09GJP-6LFMt-YugUz5H95OHC5AyBtvta9Ue7znNH8N-f8P-fgB0M3bos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652422464</pqid></control><display><type>article</type><title>Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS2</title><source>ACS Publications</source><creator>Yamaguchi, Hisato ; Blancon, Jean-Christophe ; Kappera, Rajesh ; Lei, Sidong ; Najmaei, Sina ; Mangum, Benjamin D ; Gupta, Gautam ; Ajayan, Pulickel M ; Lou, Jun ; Chhowalla, Manish ; Crochet, Jared J ; Mohite, Aditya D</creator><creatorcontrib>Yamaguchi, Hisato ; Blancon, Jean-Christophe ; Kappera, Rajesh ; Lei, Sidong ; Najmaei, Sina ; Mangum, Benjamin D ; Gupta, Gautam ; Ajayan, Pulickel M ; Lou, Jun ; Chhowalla, Manish ; Crochet, Jared J ; Mohite, Aditya D</creatorcontrib><description>A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photoexcitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed toward the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are a few millielectron volts for 1T- and ∼200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photoresponsivity by more than 1 order of magnitude, a crucial parameter in achieving high-performance optoelectronic devices. The obtained results pave a way for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where ohmic contacts are necessary for achieving high-efficiency devices with low power consumption.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn506469v</identifier><identifier>PMID: 25521210</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2015-01, Vol.9 (1), p.840-849</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn506469v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn506469v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25521210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamaguchi, Hisato</creatorcontrib><creatorcontrib>Blancon, Jean-Christophe</creatorcontrib><creatorcontrib>Kappera, Rajesh</creatorcontrib><creatorcontrib>Lei, Sidong</creatorcontrib><creatorcontrib>Najmaei, Sina</creatorcontrib><creatorcontrib>Mangum, Benjamin D</creatorcontrib><creatorcontrib>Gupta, Gautam</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><creatorcontrib>Lou, Jun</creatorcontrib><creatorcontrib>Chhowalla, Manish</creatorcontrib><creatorcontrib>Crochet, Jared J</creatorcontrib><creatorcontrib>Mohite, Aditya D</creatorcontrib><title>Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS2</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photoexcitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed toward the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are a few millielectron volts for 1T- and ∼200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photoresponsivity by more than 1 order of magnitude, a crucial parameter in achieving high-performance optoelectronic devices. The obtained results pave a way for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where ohmic contacts are necessary for achieving high-efficiency devices with low power consumption.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQBuBFFFurB_-A5CJ4ie5ukk1ylFg_oEWxCuIlTDaTNiXZrbtJMf_elVZPM8M8DMNLyDmj14xydqNUREUo0u0BGbM0ED5NxMfhfx-xETmxdk1pFCexOCYjHkWccUbH5HOxga6Gphm8V7S62WLpvax0p_Fb1p0bshWYJfoZGFOj8e4GBW0trVcr58CiP1XLWiEaZ-da6QYGx-Z6wU_JUQWNxbN9nZD3--lb9ujPnh-estuZDzyKt34qi7IAiKs4ZpIWJWBZuf8kFAlQhpJVAU9iKUqksmRJCpVblwIDWoVUpGkwIVe7uxujv3q0Xd7WVmLTgELd25yJiIechyJ09GJP-6LFMt-YugUz5H95OHC5AyBtvta9Ue7znNH8N-f8P-fgB0M3bos</recordid><startdate>20150127</startdate><enddate>20150127</enddate><creator>Yamaguchi, Hisato</creator><creator>Blancon, Jean-Christophe</creator><creator>Kappera, Rajesh</creator><creator>Lei, Sidong</creator><creator>Najmaei, Sina</creator><creator>Mangum, Benjamin D</creator><creator>Gupta, Gautam</creator><creator>Ajayan, Pulickel M</creator><creator>Lou, Jun</creator><creator>Chhowalla, Manish</creator><creator>Crochet, Jared J</creator><creator>Mohite, Aditya D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150127</creationdate><title>Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS2</title><author>Yamaguchi, Hisato ; Blancon, Jean-Christophe ; Kappera, Rajesh ; Lei, Sidong ; Najmaei, Sina ; Mangum, Benjamin D ; Gupta, Gautam ; Ajayan, Pulickel M ; Lou, Jun ; Chhowalla, Manish ; Crochet, Jared J ; Mohite, Aditya D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a257v-9cbdbaa7f771c0bdaedf255cab8a01ec1f3287c6de0cd189aff25d6e30f406993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Hisato</creatorcontrib><creatorcontrib>Blancon, Jean-Christophe</creatorcontrib><creatorcontrib>Kappera, Rajesh</creatorcontrib><creatorcontrib>Lei, Sidong</creatorcontrib><creatorcontrib>Najmaei, Sina</creatorcontrib><creatorcontrib>Mangum, Benjamin D</creatorcontrib><creatorcontrib>Gupta, Gautam</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><creatorcontrib>Lou, Jun</creatorcontrib><creatorcontrib>Chhowalla, Manish</creatorcontrib><creatorcontrib>Crochet, Jared J</creatorcontrib><creatorcontrib>Mohite, Aditya D</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Hisato</au><au>Blancon, Jean-Christophe</au><au>Kappera, Rajesh</au><au>Lei, Sidong</au><au>Najmaei, Sina</au><au>Mangum, Benjamin D</au><au>Gupta, Gautam</au><au>Ajayan, Pulickel M</au><au>Lou, Jun</au><au>Chhowalla, Manish</au><au>Crochet, Jared J</au><au>Mohite, Aditya D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS2</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-01-27</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>840</spage><epage>849</epage><pages>840-849</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photoexcitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed toward the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are a few millielectron volts for 1T- and ∼200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photoresponsivity by more than 1 order of magnitude, a crucial parameter in achieving high-performance optoelectronic devices. The obtained results pave a way for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where ohmic contacts are necessary for achieving high-efficiency devices with low power consumption.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25521210</pmid><doi>10.1021/nn506469v</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2015-01, Vol.9 (1), p.840-849
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1652422464
source ACS Publications
title Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Resolved%20Photoexcited%20Charge-Carrier%20Dynamics%20in%20Phase-Engineered%20Monolayer%20MoS2&rft.jtitle=ACS%20nano&rft.au=Yamaguchi,%20Hisato&rft.date=2015-01-27&rft.volume=9&rft.issue=1&rft.spage=840&rft.epage=849&rft.pages=840-849&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn506469v&rft_dat=%3Cproquest_pubme%3E1652422464%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652422464&rft_id=info:pmid/25521210&rfr_iscdi=true