A dendrite-suppressing composite ion conductor from aramid nanofibres
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. H...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-01, Vol.6 (1), p.6152-6152 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6152 |
---|---|
container_issue | 1 |
container_start_page | 6152 |
container_title | Nature communications |
container_volume | 6 |
creator | Tung, Siu-On Ho, Szushen Yang, Ming Zhang, Ruilin Kotov, Nicholas A. |
description | Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Lithium dendrite growth is a serious hazard in battery operations. Here, the authors report an ion-conducting membrane based on aramid nanofibers, and demonstrate effective suppression of copper and lithium dendrites. |
doi_str_mv | 10.1038/ncomms7152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652418671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652418671</sourcerecordid><originalsourceid>FETCH-LOGICAL-p205t-eca620cb4753749dd3ab25fb21256a197c19bcf61a5c7eae57e5816f15d4eb063</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMgttRe_AGy4EWQ1Uw-d4-l1A8oeNHzkk2yJaWbrMnuwX9vpBXFuQwz88zLy4vQFeB7wLR68Dr0fZLAyRmaE8ygBEnoDC1T2uNctIaKsQs0I1wQARLP0WZVGOtNdKMt0zQM0abk_K7ISkNIeVu44PPkzaTHEIsuhr5QUfXOFF750Lk2v1yi804dkl2e-gK9P27e1s_l9vXpZb3algPBfCytVoJg3TLJqWS1MVS1hHctgWxIQS011K3uBCiupVWWS8srEB1ww2yLBV2g26PuEMPHZNPY9C5pezgob8OUGhCcMKiEhIze_EP3YYo-u8sUq2glAKpMXZ-oqe2taYboehU_m5-AMnB3BFI--Z2Nf2Rw851685s6_QJMlnTf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648386118</pqid></control><display><type>article</type><title>A dendrite-suppressing composite ion conductor from aramid nanofibres</title><source>Springer Nature OA Free Journals</source><creator>Tung, Siu-On ; Ho, Szushen ; Yang, Ming ; Zhang, Ruilin ; Kotov, Nicholas A.</creator><creatorcontrib>Tung, Siu-On ; Ho, Szushen ; Yang, Ming ; Zhang, Ruilin ; Kotov, Nicholas A.</creatorcontrib><description>Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Lithium dendrite growth is a serious hazard in battery operations. Here, the authors report an ion-conducting membrane based on aramid nanofibers, and demonstrate effective suppression of copper and lithium dendrites.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7152</identifier><identifier>PMID: 25626170</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1025 ; 639/301/299/161 ; 639/301/357 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2015-01, Vol.6 (1), p.6152-6152</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p205t-eca620cb4753749dd3ab25fb21256a197c19bcf61a5c7eae57e5816f15d4eb063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms7152$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms7152$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms7152$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25626170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tung, Siu-On</creatorcontrib><creatorcontrib>Ho, Szushen</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhang, Ruilin</creatorcontrib><creatorcontrib>Kotov, Nicholas A.</creatorcontrib><title>A dendrite-suppressing composite ion conductor from aramid nanofibres</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Lithium dendrite growth is a serious hazard in battery operations. Here, the authors report an ion-conducting membrane based on aramid nanofibers, and demonstrate effective suppression of copper and lithium dendrites.</description><subject>639/301/1023/1025</subject><subject>639/301/299/161</subject><subject>639/301/357</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1LAzEQhoMgttRe_AGy4EWQ1Uw-d4-l1A8oeNHzkk2yJaWbrMnuwX9vpBXFuQwz88zLy4vQFeB7wLR68Dr0fZLAyRmaE8ygBEnoDC1T2uNctIaKsQs0I1wQARLP0WZVGOtNdKMt0zQM0abk_K7ISkNIeVu44PPkzaTHEIsuhr5QUfXOFF750Lk2v1yi804dkl2e-gK9P27e1s_l9vXpZb3algPBfCytVoJg3TLJqWS1MVS1hHctgWxIQS011K3uBCiupVWWS8srEB1ww2yLBV2g26PuEMPHZNPY9C5pezgob8OUGhCcMKiEhIze_EP3YYo-u8sUq2glAKpMXZ-oqe2taYboehU_m5-AMnB3BFI--Z2Nf2Rw851685s6_QJMlnTf</recordid><startdate>20150127</startdate><enddate>20150127</enddate><creator>Tung, Siu-On</creator><creator>Ho, Szushen</creator><creator>Yang, Ming</creator><creator>Zhang, Ruilin</creator><creator>Kotov, Nicholas A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20150127</creationdate><title>A dendrite-suppressing composite ion conductor from aramid nanofibres</title><author>Tung, Siu-On ; Ho, Szushen ; Yang, Ming ; Zhang, Ruilin ; Kotov, Nicholas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p205t-eca620cb4753749dd3ab25fb21256a197c19bcf61a5c7eae57e5816f15d4eb063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/1023/1025</topic><topic>639/301/299/161</topic><topic>639/301/357</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tung, Siu-On</creatorcontrib><creatorcontrib>Ho, Szushen</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhang, Ruilin</creatorcontrib><creatorcontrib>Kotov, Nicholas A.</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tung, Siu-On</au><au>Ho, Szushen</au><au>Yang, Ming</au><au>Zhang, Ruilin</au><au>Kotov, Nicholas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dendrite-suppressing composite ion conductor from aramid nanofibres</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-01-27</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6152</spage><epage>6152</epage><pages>6152-6152</pages><eissn>2041-1723</eissn><abstract>Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Lithium dendrite growth is a serious hazard in battery operations. Here, the authors report an ion-conducting membrane based on aramid nanofibers, and demonstrate effective suppression of copper and lithium dendrites.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25626170</pmid><doi>10.1038/ncomms7152</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2041-1723 |
ispartof | Nature communications, 2015-01, Vol.6 (1), p.6152-6152 |
issn | 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1652418671 |
source | Springer Nature OA Free Journals |
subjects | 639/301/1023/1025 639/301/299/161 639/301/357 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | A dendrite-suppressing composite ion conductor from aramid nanofibres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dendrite-suppressing%20composite%20ion%20conductor%20from%20aramid%20nanofibres&rft.jtitle=Nature%20communications&rft.au=Tung,%20Siu-On&rft.date=2015-01-27&rft.volume=6&rft.issue=1&rft.spage=6152&rft.epage=6152&rft.pages=6152-6152&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7152&rft_dat=%3Cproquest_C6C%3E1652418671%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1648386118&rft_id=info:pmid/25626170&rfr_iscdi=true |