Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption

This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlaye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2015-01, Vol.31 (1), p.180-187
Hauptverfasser: Okada, Tomohiko, Oguchi, Junpei, Yamamoto, Ken-ichiro, Shiono, Takashi, Fujita, Masahiko, Iiyama, Taku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 1
container_start_page 180
container_title Langmuir
container_volume 31
creator Okada, Tomohiko
Oguchi, Junpei
Yamamoto, Ken-ichiro
Shiono, Takashi
Fujita, Masahiko
Iiyama, Taku
description This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium–smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium–montmorillonite system but showed no effect on benzylammonium–saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media.
doi_str_mv 10.1021/la503708t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652386996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652386996</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-d240206f8f4c8e05950944d44aa9f7e6df0184033c6ffdf5e2aecfa515f2634e3</originalsourceid><addsrcrecordid>eNpt0E9Lw0AQh-FFFFurB7-A5CLoITr7N8mxlFYLhV4qHsO4mdWUNIm7Cdhvb6Tak6e5PPxgXsauOTxwEPyxQg0ygbQ7YWOuBcQ6FckpG0OiZJwoI0fsIoQtAGRSZedsJLQWggs-Zsu1f8e6sRXuQ1TW0St25KMZ9oGi-VeLdSibOtp8YBct0JZV2Q0gDMA5KmuKpkVofNsN6JKdOawCXf3eCXtZzDez53i1flrOpqsYJdddXAgFAoxLnbIpgc40ZEoVSiFmLiFTOOCpAimtca5wmgSSdai5dsJIRXLC7g67rW8-ewpdviuDparCmpo-5NxoIVOTZWag9wdqfROCJ5e3vtyh3-cc8p9y-bHcYG9-Z_u3HRVH-ZdqALcHgDbk26b39fDlP0Pfwad0Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652386996</pqid></control><display><type>article</type><title>Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Okada, Tomohiko ; Oguchi, Junpei ; Yamamoto, Ken-ichiro ; Shiono, Takashi ; Fujita, Masahiko ; Iiyama, Taku</creator><creatorcontrib>Okada, Tomohiko ; Oguchi, Junpei ; Yamamoto, Ken-ichiro ; Shiono, Takashi ; Fujita, Masahiko ; Iiyama, Taku</creatorcontrib><description>This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium–smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium–montmorillonite system but showed no effect on benzylammonium–saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la503708t</identifier><identifier>PMID: 25522121</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Aluminum Silicates - chemistry ; Bentonite - chemistry ; Caffeine - chemistry ; Caffeine - metabolism ; Models, Molecular ; Silicates - chemistry ; Water - chemistry</subject><ispartof>Langmuir, 2015-01, Vol.31 (1), p.180-187</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-d240206f8f4c8e05950944d44aa9f7e6df0184033c6ffdf5e2aecfa515f2634e3</citedby><cites>FETCH-LOGICAL-a315t-d240206f8f4c8e05950944d44aa9f7e6df0184033c6ffdf5e2aecfa515f2634e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la503708t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la503708t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25522121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Tomohiko</creatorcontrib><creatorcontrib>Oguchi, Junpei</creatorcontrib><creatorcontrib>Yamamoto, Ken-ichiro</creatorcontrib><creatorcontrib>Shiono, Takashi</creatorcontrib><creatorcontrib>Fujita, Masahiko</creatorcontrib><creatorcontrib>Iiyama, Taku</creatorcontrib><title>Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium–smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium–montmorillonite system but showed no effect on benzylammonium–saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media.</description><subject>Adsorption</subject><subject>Aluminum Silicates - chemistry</subject><subject>Bentonite - chemistry</subject><subject>Caffeine - chemistry</subject><subject>Caffeine - metabolism</subject><subject>Models, Molecular</subject><subject>Silicates - chemistry</subject><subject>Water - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E9Lw0AQh-FFFFurB7-A5CLoITr7N8mxlFYLhV4qHsO4mdWUNIm7Cdhvb6Tak6e5PPxgXsauOTxwEPyxQg0ygbQ7YWOuBcQ6FckpG0OiZJwoI0fsIoQtAGRSZedsJLQWggs-Zsu1f8e6sRXuQ1TW0St25KMZ9oGi-VeLdSibOtp8YBct0JZV2Q0gDMA5KmuKpkVofNsN6JKdOawCXf3eCXtZzDez53i1flrOpqsYJdddXAgFAoxLnbIpgc40ZEoVSiFmLiFTOOCpAimtca5wmgSSdai5dsJIRXLC7g67rW8-ewpdviuDparCmpo-5NxoIVOTZWag9wdqfROCJ5e3vtyh3-cc8p9y-bHcYG9-Z_u3HRVH-ZdqALcHgDbk26b39fDlP0Pfwad0Vw</recordid><startdate>20150113</startdate><enddate>20150113</enddate><creator>Okada, Tomohiko</creator><creator>Oguchi, Junpei</creator><creator>Yamamoto, Ken-ichiro</creator><creator>Shiono, Takashi</creator><creator>Fujita, Masahiko</creator><creator>Iiyama, Taku</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150113</creationdate><title>Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption</title><author>Okada, Tomohiko ; Oguchi, Junpei ; Yamamoto, Ken-ichiro ; Shiono, Takashi ; Fujita, Masahiko ; Iiyama, Taku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-d240206f8f4c8e05950944d44aa9f7e6df0184033c6ffdf5e2aecfa515f2634e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Aluminum Silicates - chemistry</topic><topic>Bentonite - chemistry</topic><topic>Caffeine - chemistry</topic><topic>Caffeine - metabolism</topic><topic>Models, Molecular</topic><topic>Silicates - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Tomohiko</creatorcontrib><creatorcontrib>Oguchi, Junpei</creatorcontrib><creatorcontrib>Yamamoto, Ken-ichiro</creatorcontrib><creatorcontrib>Shiono, Takashi</creatorcontrib><creatorcontrib>Fujita, Masahiko</creatorcontrib><creatorcontrib>Iiyama, Taku</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Tomohiko</au><au>Oguchi, Junpei</au><au>Yamamoto, Ken-ichiro</au><au>Shiono, Takashi</au><au>Fujita, Masahiko</au><au>Iiyama, Taku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2015-01-13</date><risdate>2015</risdate><volume>31</volume><issue>1</issue><spage>180</spage><epage>187</epage><pages>180-187</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium–smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium–montmorillonite system but showed no effect on benzylammonium–saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25522121</pmid><doi>10.1021/la503708t</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2015-01, Vol.31 (1), p.180-187
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1652386996
source MEDLINE; American Chemical Society Journals
subjects Adsorption
Aluminum Silicates - chemistry
Bentonite - chemistry
Caffeine - chemistry
Caffeine - metabolism
Models, Molecular
Silicates - chemistry
Water - chemistry
title Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organoclays%20in%20Water%20Cause%20Expansion%20That%20Facilitates%20Caffeine%20Adsorption&rft.jtitle=Langmuir&rft.au=Okada,%20Tomohiko&rft.date=2015-01-13&rft.volume=31&rft.issue=1&rft.spage=180&rft.epage=187&rft.pages=180-187&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la503708t&rft_dat=%3Cproquest_cross%3E1652386996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652386996&rft_id=info:pmid/25522121&rfr_iscdi=true