Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption
This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlaye...
Gespeichert in:
Veröffentlicht in: | Langmuir 2015-01, Vol.31 (1), p.180-187 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | 1 |
container_start_page | 180 |
container_title | Langmuir |
container_volume | 31 |
creator | Okada, Tomohiko Oguchi, Junpei Yamamoto, Ken-ichiro Shiono, Takashi Fujita, Masahiko Iiyama, Taku |
description | This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium–smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium–montmorillonite system but showed no effect on benzylammonium–saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media. |
doi_str_mv | 10.1021/la503708t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652386996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652386996</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-d240206f8f4c8e05950944d44aa9f7e6df0184033c6ffdf5e2aecfa515f2634e3</originalsourceid><addsrcrecordid>eNpt0E9Lw0AQh-FFFFurB7-A5CLoITr7N8mxlFYLhV4qHsO4mdWUNIm7Cdhvb6Tak6e5PPxgXsauOTxwEPyxQg0ygbQ7YWOuBcQ6FckpG0OiZJwoI0fsIoQtAGRSZedsJLQWggs-Zsu1f8e6sRXuQ1TW0St25KMZ9oGi-VeLdSibOtp8YBct0JZV2Q0gDMA5KmuKpkVofNsN6JKdOawCXf3eCXtZzDez53i1flrOpqsYJdddXAgFAoxLnbIpgc40ZEoVSiFmLiFTOOCpAimtca5wmgSSdai5dsJIRXLC7g67rW8-ewpdviuDparCmpo-5NxoIVOTZWag9wdqfROCJ5e3vtyh3-cc8p9y-bHcYG9-Z_u3HRVH-ZdqALcHgDbk26b39fDlP0Pfwad0Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652386996</pqid></control><display><type>article</type><title>Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Okada, Tomohiko ; Oguchi, Junpei ; Yamamoto, Ken-ichiro ; Shiono, Takashi ; Fujita, Masahiko ; Iiyama, Taku</creator><creatorcontrib>Okada, Tomohiko ; Oguchi, Junpei ; Yamamoto, Ken-ichiro ; Shiono, Takashi ; Fujita, Masahiko ; Iiyama, Taku</creatorcontrib><description>This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium–smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium–montmorillonite system but showed no effect on benzylammonium–saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la503708t</identifier><identifier>PMID: 25522121</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Aluminum Silicates - chemistry ; Bentonite - chemistry ; Caffeine - chemistry ; Caffeine - metabolism ; Models, Molecular ; Silicates - chemistry ; Water - chemistry</subject><ispartof>Langmuir, 2015-01, Vol.31 (1), p.180-187</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-d240206f8f4c8e05950944d44aa9f7e6df0184033c6ffdf5e2aecfa515f2634e3</citedby><cites>FETCH-LOGICAL-a315t-d240206f8f4c8e05950944d44aa9f7e6df0184033c6ffdf5e2aecfa515f2634e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la503708t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la503708t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25522121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Tomohiko</creatorcontrib><creatorcontrib>Oguchi, Junpei</creatorcontrib><creatorcontrib>Yamamoto, Ken-ichiro</creatorcontrib><creatorcontrib>Shiono, Takashi</creatorcontrib><creatorcontrib>Fujita, Masahiko</creatorcontrib><creatorcontrib>Iiyama, Taku</creatorcontrib><title>Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium–smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium–montmorillonite system but showed no effect on benzylammonium–saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media.</description><subject>Adsorption</subject><subject>Aluminum Silicates - chemistry</subject><subject>Bentonite - chemistry</subject><subject>Caffeine - chemistry</subject><subject>Caffeine - metabolism</subject><subject>Models, Molecular</subject><subject>Silicates - chemistry</subject><subject>Water - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E9Lw0AQh-FFFFurB7-A5CLoITr7N8mxlFYLhV4qHsO4mdWUNIm7Cdhvb6Tak6e5PPxgXsauOTxwEPyxQg0ygbQ7YWOuBcQ6FckpG0OiZJwoI0fsIoQtAGRSZedsJLQWggs-Zsu1f8e6sRXuQ1TW0St25KMZ9oGi-VeLdSibOtp8YBct0JZV2Q0gDMA5KmuKpkVofNsN6JKdOawCXf3eCXtZzDez53i1flrOpqsYJdddXAgFAoxLnbIpgc40ZEoVSiFmLiFTOOCpAimtca5wmgSSdai5dsJIRXLC7g67rW8-ewpdviuDparCmpo-5NxoIVOTZWag9wdqfROCJ5e3vtyh3-cc8p9y-bHcYG9-Z_u3HRVH-ZdqALcHgDbk26b39fDlP0Pfwad0Vw</recordid><startdate>20150113</startdate><enddate>20150113</enddate><creator>Okada, Tomohiko</creator><creator>Oguchi, Junpei</creator><creator>Yamamoto, Ken-ichiro</creator><creator>Shiono, Takashi</creator><creator>Fujita, Masahiko</creator><creator>Iiyama, Taku</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150113</creationdate><title>Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption</title><author>Okada, Tomohiko ; Oguchi, Junpei ; Yamamoto, Ken-ichiro ; Shiono, Takashi ; Fujita, Masahiko ; Iiyama, Taku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-d240206f8f4c8e05950944d44aa9f7e6df0184033c6ffdf5e2aecfa515f2634e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Aluminum Silicates - chemistry</topic><topic>Bentonite - chemistry</topic><topic>Caffeine - chemistry</topic><topic>Caffeine - metabolism</topic><topic>Models, Molecular</topic><topic>Silicates - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Tomohiko</creatorcontrib><creatorcontrib>Oguchi, Junpei</creatorcontrib><creatorcontrib>Yamamoto, Ken-ichiro</creatorcontrib><creatorcontrib>Shiono, Takashi</creatorcontrib><creatorcontrib>Fujita, Masahiko</creatorcontrib><creatorcontrib>Iiyama, Taku</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Tomohiko</au><au>Oguchi, Junpei</au><au>Yamamoto, Ken-ichiro</au><au>Shiono, Takashi</au><au>Fujita, Masahiko</au><au>Iiyama, Taku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2015-01-13</date><risdate>2015</risdate><volume>31</volume><issue>1</issue><spage>180</spage><epage>187</epage><pages>180-187</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>This study investigates the adsorption of caffeine in water on organically modified clays (a natural montmorillonite and synthetic saponite, which are smectite group of layered clay minerals). The organoclays were prepared by cation-exchange reactions of benzylammonium and neostigmine with interlayer exchangeable cations in the clay minerals. Although less caffeine was uptaken on neostigmine-modified clays than on raw clay minerals, uptake was increased by adding benzylammonium to the clays. The adsorption equilibrium constant was considerably higher on benzylammonium-modified saponite (containing small quantities of intercalated benzylammonium) than on its montmorillonite counterpart. These observations suggest that decreasing the size and number of intercalated cations enlarges the siloxane surface area available for caffeine adsorption. When the benzylammonium–smectite powders were immersed in water, the intercalated water molecules expanded the interlayer space. Addition of caffeine to the aqueous dispersion further expanded the benzylammonium–montmorillonite system but showed no effect on benzylammonium–saponite. We assume that intercalated water molecules were exchanged with caffeine molecules. By intercalating benzylammonium into smectites, we have potentially created an adaptable two-dimensional nanospace that sequesters caffeine from aqueous media.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25522121</pmid><doi>10.1021/la503708t</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2015-01, Vol.31 (1), p.180-187 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1652386996 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adsorption Aluminum Silicates - chemistry Bentonite - chemistry Caffeine - chemistry Caffeine - metabolism Models, Molecular Silicates - chemistry Water - chemistry |
title | Organoclays in Water Cause Expansion That Facilitates Caffeine Adsorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organoclays%20in%20Water%20Cause%20Expansion%20That%20Facilitates%20Caffeine%20Adsorption&rft.jtitle=Langmuir&rft.au=Okada,%20Tomohiko&rft.date=2015-01-13&rft.volume=31&rft.issue=1&rft.spage=180&rft.epage=187&rft.pages=180-187&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la503708t&rft_dat=%3Cproquest_cross%3E1652386996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652386996&rft_id=info:pmid/25522121&rfr_iscdi=true |