An EEG Finger-Print of fMRI deep regional activation

This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2014-11, Vol.102, p.128-141
Hauptverfasser: Meir-Hasson, Yehudit, Kinreich, Sivan, Podlipsky, Ilana, Hendler, Talma, Intrator, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue
container_start_page 128
container_title NeuroImage (Orlando, Fla.)
container_volume 102
creator Meir-Hasson, Yehudit
Kinreich, Sivan
Podlipsky, Ilana
Hendler, Talma
Intrator, Nathan
description This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. •We use simultaneous EEG/fMRI to produce an EEG Finger-Print (EFP).•The EFP can be used to predict the BOLD activity at a given sub-cortical region.•We use T/F representation of the EEG data where each frequency has its own delay.•We show improved prediction of the amygdala during real-time relaxation training.•The EFP may reduce the need for fMRI for probing specific sub-cortical regions.
doi_str_mv 10.1016/j.neuroimage.2013.11.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652385593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811913010963</els_id><sourcerecordid>1622609381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-6bfab249c9e4508a975db1f2523f899d1604b6cb2132f1876958da62fc6b03ff3</originalsourceid><addsrcrecordid>eNqNkUtLLDEQhYMovv-CNNyNm25T6SSTLL0yPkBRRNchna4MGWa65ybdgv_ejOMD3FxXVQXfqaLOIaQAWgEFeTavOhxjH5Z2hhWjUFcAFaV8i-wD1aLUYsK2172oSwWg98hBSnNKqQaudske44xLrvk-4eddMZ1eFZehm2EsH2LohqL3hb97vClaxFURcRb6zi4K64bwYoc8HJEdbxcJjz_qIXm-nD5dXJe391c3F-e3pRNUDKVsvG0Y104jF1RZPRFtA54JVnuldQuS8ka6hkHNPKiJ1EK1VjLvZENr7-tDcrrZu4r9vxHTYJYhOVwsbIf9mAzIvEoJoetfoIxJqmsFGf3zA533Y8wfvlNCcyr4JFNqQ7nYpxTRm1XMfsdXA9SsQzBz8x2CWYdgAEwOIUtPPg6MzRLbL-Gn6xn4uwEwm_cSMJrkAnYO2xDRDabtw_-vvAHtSZmm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625940547</pqid></control><display><type>article</type><title>An EEG Finger-Print of fMRI deep regional activation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Meir-Hasson, Yehudit ; Kinreich, Sivan ; Podlipsky, Ilana ; Hendler, Talma ; Intrator, Nathan</creator><creatorcontrib>Meir-Hasson, Yehudit ; Kinreich, Sivan ; Podlipsky, Ilana ; Hendler, Talma ; Intrator, Nathan</creatorcontrib><description>This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. •We use simultaneous EEG/fMRI to produce an EEG Finger-Print (EFP).•The EFP can be used to predict the BOLD activity at a given sub-cortical region.•We use T/F representation of the EEG data where each frequency has its own delay.•We show improved prediction of the amygdala during real-time relaxation training.•The EFP may reduce the need for fMRI for probing specific sub-cortical regions.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.11.004</identifier><identifier>PMID: 24246494</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amygdala - physiology ; Behavior ; Brain research ; EEG Finger-Print ; Electroencephalography ; Emotions ; Humans ; Magnetic Resonance Imaging ; Memory ; Models, Neurological ; Post traumatic stress disorder ; Ridge-regression ; Simultaneous fMRI/EEG ; Time/frequency ; Visual Cortex - physiology</subject><ispartof>NeuroImage (Orlando, Fla.), 2014-11, Vol.102, p.128-141</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 15, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-6bfab249c9e4508a975db1f2523f899d1604b6cb2132f1876958da62fc6b03ff3</citedby><cites>FETCH-LOGICAL-c505t-6bfab249c9e4508a975db1f2523f899d1604b6cb2132f1876958da62fc6b03ff3</cites><orcidid>0000-0002-6494-1542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811913010963$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24246494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meir-Hasson, Yehudit</creatorcontrib><creatorcontrib>Kinreich, Sivan</creatorcontrib><creatorcontrib>Podlipsky, Ilana</creatorcontrib><creatorcontrib>Hendler, Talma</creatorcontrib><creatorcontrib>Intrator, Nathan</creatorcontrib><title>An EEG Finger-Print of fMRI deep regional activation</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. •We use simultaneous EEG/fMRI to produce an EEG Finger-Print (EFP).•The EFP can be used to predict the BOLD activity at a given sub-cortical region.•We use T/F representation of the EEG data where each frequency has its own delay.•We show improved prediction of the amygdala during real-time relaxation training.•The EFP may reduce the need for fMRI for probing specific sub-cortical regions.</description><subject>Amygdala - physiology</subject><subject>Behavior</subject><subject>Brain research</subject><subject>EEG Finger-Print</subject><subject>Electroencephalography</subject><subject>Emotions</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Memory</subject><subject>Models, Neurological</subject><subject>Post traumatic stress disorder</subject><subject>Ridge-regression</subject><subject>Simultaneous fMRI/EEG</subject><subject>Time/frequency</subject><subject>Visual Cortex - physiology</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtLLDEQhYMovv-CNNyNm25T6SSTLL0yPkBRRNchna4MGWa65ybdgv_ejOMD3FxXVQXfqaLOIaQAWgEFeTavOhxjH5Z2hhWjUFcAFaV8i-wD1aLUYsK2172oSwWg98hBSnNKqQaudske44xLrvk-4eddMZ1eFZehm2EsH2LohqL3hb97vClaxFURcRb6zi4K64bwYoc8HJEdbxcJjz_qIXm-nD5dXJe391c3F-e3pRNUDKVsvG0Y104jF1RZPRFtA54JVnuldQuS8ka6hkHNPKiJ1EK1VjLvZENr7-tDcrrZu4r9vxHTYJYhOVwsbIf9mAzIvEoJoetfoIxJqmsFGf3zA533Y8wfvlNCcyr4JFNqQ7nYpxTRm1XMfsdXA9SsQzBz8x2CWYdgAEwOIUtPPg6MzRLbL-Gn6xn4uwEwm_cSMJrkAnYO2xDRDabtw_-vvAHtSZmm</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Meir-Hasson, Yehudit</creator><creator>Kinreich, Sivan</creator><creator>Podlipsky, Ilana</creator><creator>Hendler, Talma</creator><creator>Intrator, Nathan</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6494-1542</orcidid></search><sort><creationdate>20141115</creationdate><title>An EEG Finger-Print of fMRI deep regional activation</title><author>Meir-Hasson, Yehudit ; Kinreich, Sivan ; Podlipsky, Ilana ; Hendler, Talma ; Intrator, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-6bfab249c9e4508a975db1f2523f899d1604b6cb2132f1876958da62fc6b03ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amygdala - physiology</topic><topic>Behavior</topic><topic>Brain research</topic><topic>EEG Finger-Print</topic><topic>Electroencephalography</topic><topic>Emotions</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Memory</topic><topic>Models, Neurological</topic><topic>Post traumatic stress disorder</topic><topic>Ridge-regression</topic><topic>Simultaneous fMRI/EEG</topic><topic>Time/frequency</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meir-Hasson, Yehudit</creatorcontrib><creatorcontrib>Kinreich, Sivan</creatorcontrib><creatorcontrib>Podlipsky, Ilana</creatorcontrib><creatorcontrib>Hendler, Talma</creatorcontrib><creatorcontrib>Intrator, Nathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meir-Hasson, Yehudit</au><au>Kinreich, Sivan</au><au>Podlipsky, Ilana</au><au>Hendler, Talma</au><au>Intrator, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An EEG Finger-Print of fMRI deep regional activation</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2014-11-15</date><risdate>2014</risdate><volume>102</volume><spage>128</spage><epage>141</epage><pages>128-141</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. •We use simultaneous EEG/fMRI to produce an EEG Finger-Print (EFP).•The EFP can be used to predict the BOLD activity at a given sub-cortical region.•We use T/F representation of the EEG data where each frequency has its own delay.•We show improved prediction of the amygdala during real-time relaxation training.•The EFP may reduce the need for fMRI for probing specific sub-cortical regions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24246494</pmid><doi>10.1016/j.neuroimage.2013.11.004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6494-1542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2014-11, Vol.102, p.128-141
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1652385593
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amygdala - physiology
Behavior
Brain research
EEG Finger-Print
Electroencephalography
Emotions
Humans
Magnetic Resonance Imaging
Memory
Models, Neurological
Post traumatic stress disorder
Ridge-regression
Simultaneous fMRI/EEG
Time/frequency
Visual Cortex - physiology
title An EEG Finger-Print of fMRI deep regional activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20EEG%20Finger-Print%20of%20fMRI%20deep%20regional%20activation&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Meir-Hasson,%20Yehudit&rft.date=2014-11-15&rft.volume=102&rft.spage=128&rft.epage=141&rft.pages=128-141&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.11.004&rft_dat=%3Cproquest_cross%3E1622609381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625940547&rft_id=info:pmid/24246494&rft_els_id=S1053811913010963&rfr_iscdi=true