Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents

Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2014-11, Vol.136 (46), p.16309-16316
Hauptverfasser: Nagarjuna, Gavvalapalli, Hui, Jingshu, Cheng, Kevin J, Lichtenstein, Timothy, Shen, Mei, Moore, Jeffrey S, Rodríguez-López, Joaquín
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16316
container_issue 46
container_start_page 16309
container_title Journal of the American Chemical Society
container_volume 136
creator Nagarjuna, Gavvalapalli
Hui, Jingshu
Cheng, Kevin J
Lichtenstein, Timothy
Shen, Mei
Moore, Jeffrey S
Rodríguez-López, Joaquín
description Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E 1/2 ∼ −0.7 V vs Ag/Ag+(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94–99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes–Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li+BF4 –) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for r poly/r pore (polymer solvodynamic size relative to pore size) values as low as 0.3. The high concentration attainable (>2.0 M) for RAPs in common nonaqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for nonaqueous redox flow batteries based on the enabling concept of size-selectivity.
doi_str_mv 10.1021/ja508482e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652382731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652382731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-db6abd893ad7488e823258dd35218b31fa6d530c0a6997e88f43aa9cb3dd48dc3</originalsourceid><addsrcrecordid>eNptkMtO5DAQRS0EohtmFvzAyJuRYBHwIw_3soWAQeKlodEso4pdodNK4mA7CL5ifnkM3dMrVqWqOrq69xJyxNkpZ4KfrSBjKlUCd8iUZ4IlGRf5LpkyxkRSqFxOyIH3q7imQvF9MhGZFFnB5JT8ve4G0IHamv5GY9-SuQ7NK9IH27536OitbVGPLTj6B5vnZQR7GpZIL-I5OKuX2DUaWvrg7IAuNOgp9IYuHPR-sC7QuXbW-6jn7OjpIw7gIFjnadPTO9vDy4ifD9u-Yh_8N7JXQ-vx-2YekqfLi8X5r-Tm_ur6fH6TQMpVSEyVQ2XUTIIpUqVQiRhIGSMzwVUleQ25ySTTDPLZrECl6lQCzHQljUmV0fKQHK91B2ejBR_KrvEa2xb6Dz8lzzMhlSgkj-jJGv1M4rAuB9d04N5LzsqP_stt_5H9sZEdqw7NlvxfeAR-rgHQvlzZ0fUx5RdC_wDHgI8D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652382731</pqid></control><display><type>article</type><title>Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents</title><source>American Chemical Society Journals</source><creator>Nagarjuna, Gavvalapalli ; Hui, Jingshu ; Cheng, Kevin J ; Lichtenstein, Timothy ; Shen, Mei ; Moore, Jeffrey S ; Rodríguez-López, Joaquín</creator><creatorcontrib>Nagarjuna, Gavvalapalli ; Hui, Jingshu ; Cheng, Kevin J ; Lichtenstein, Timothy ; Shen, Mei ; Moore, Jeffrey S ; Rodríguez-López, Joaquín</creatorcontrib><description>Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E 1/2 ∼ −0.7 V vs Ag/Ag+(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94–99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes–Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li+BF4 –) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for r poly/r pore (polymer solvodynamic size relative to pore size) values as low as 0.3. The high concentration attainable (&gt;2.0 M) for RAPs in common nonaqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for nonaqueous redox flow batteries based on the enabling concept of size-selectivity.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja508482e</identifier><identifier>PMID: 25325703</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2014-11, Vol.136 (46), p.16309-16316</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a418t-db6abd893ad7488e823258dd35218b31fa6d530c0a6997e88f43aa9cb3dd48dc3</citedby><cites>FETCH-LOGICAL-a418t-db6abd893ad7488e823258dd35218b31fa6d530c0a6997e88f43aa9cb3dd48dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja508482e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja508482e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25325703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagarjuna, Gavvalapalli</creatorcontrib><creatorcontrib>Hui, Jingshu</creatorcontrib><creatorcontrib>Cheng, Kevin J</creatorcontrib><creatorcontrib>Lichtenstein, Timothy</creatorcontrib><creatorcontrib>Shen, Mei</creatorcontrib><creatorcontrib>Moore, Jeffrey S</creatorcontrib><creatorcontrib>Rodríguez-López, Joaquín</creatorcontrib><title>Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E 1/2 ∼ −0.7 V vs Ag/Ag+(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94–99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes–Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li+BF4 –) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for r poly/r pore (polymer solvodynamic size relative to pore size) values as low as 0.3. The high concentration attainable (&gt;2.0 M) for RAPs in common nonaqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for nonaqueous redox flow batteries based on the enabling concept of size-selectivity.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMtO5DAQRS0EohtmFvzAyJuRYBHwIw_3soWAQeKlodEso4pdodNK4mA7CL5ifnkM3dMrVqWqOrq69xJyxNkpZ4KfrSBjKlUCd8iUZ4IlGRf5LpkyxkRSqFxOyIH3q7imQvF9MhGZFFnB5JT8ve4G0IHamv5GY9-SuQ7NK9IH27536OitbVGPLTj6B5vnZQR7GpZIL-I5OKuX2DUaWvrg7IAuNOgp9IYuHPR-sC7QuXbW-6jn7OjpIw7gIFjnadPTO9vDy4ifD9u-Yh_8N7JXQ-vx-2YekqfLi8X5r-Tm_ur6fH6TQMpVSEyVQ2XUTIIpUqVQiRhIGSMzwVUleQ25ySTTDPLZrECl6lQCzHQljUmV0fKQHK91B2ejBR_KrvEa2xb6Dz8lzzMhlSgkj-jJGv1M4rAuB9d04N5LzsqP_stt_5H9sZEdqw7NlvxfeAR-rgHQvlzZ0fUx5RdC_wDHgI8D</recordid><startdate>20141119</startdate><enddate>20141119</enddate><creator>Nagarjuna, Gavvalapalli</creator><creator>Hui, Jingshu</creator><creator>Cheng, Kevin J</creator><creator>Lichtenstein, Timothy</creator><creator>Shen, Mei</creator><creator>Moore, Jeffrey S</creator><creator>Rodríguez-López, Joaquín</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141119</creationdate><title>Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents</title><author>Nagarjuna, Gavvalapalli ; Hui, Jingshu ; Cheng, Kevin J ; Lichtenstein, Timothy ; Shen, Mei ; Moore, Jeffrey S ; Rodríguez-López, Joaquín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-db6abd893ad7488e823258dd35218b31fa6d530c0a6997e88f43aa9cb3dd48dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagarjuna, Gavvalapalli</creatorcontrib><creatorcontrib>Hui, Jingshu</creatorcontrib><creatorcontrib>Cheng, Kevin J</creatorcontrib><creatorcontrib>Lichtenstein, Timothy</creatorcontrib><creatorcontrib>Shen, Mei</creatorcontrib><creatorcontrib>Moore, Jeffrey S</creatorcontrib><creatorcontrib>Rodríguez-López, Joaquín</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagarjuna, Gavvalapalli</au><au>Hui, Jingshu</au><au>Cheng, Kevin J</au><au>Lichtenstein, Timothy</au><au>Shen, Mei</au><au>Moore, Jeffrey S</au><au>Rodríguez-López, Joaquín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-11-19</date><risdate>2014</risdate><volume>136</volume><issue>46</issue><spage>16309</spage><epage>16316</epage><pages>16309-16316</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E 1/2 ∼ −0.7 V vs Ag/Ag+(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94–99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes–Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li+BF4 –) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for r poly/r pore (polymer solvodynamic size relative to pore size) values as low as 0.3. The high concentration attainable (&gt;2.0 M) for RAPs in common nonaqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for nonaqueous redox flow batteries based on the enabling concept of size-selectivity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25325703</pmid><doi>10.1021/ja508482e</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2014-11, Vol.136 (46), p.16309-16316
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1652382731
source American Chemical Society Journals
title Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Redox-Active%20Polymer%20Molecular%20Weight%20on%20the%20Electrochemical%20Properties%20and%20Transport%20Across%20Porous%20Separators%20in%20Nonaqueous%20Solvents&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Nagarjuna,%20Gavvalapalli&rft.date=2014-11-19&rft.volume=136&rft.issue=46&rft.spage=16309&rft.epage=16316&rft.pages=16309-16316&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja508482e&rft_dat=%3Cproquest_cross%3E1652382731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652382731&rft_id=info:pmid/25325703&rfr_iscdi=true