Feasibility of near-infrared spectroscopic tomography for intraoperative functional cerebral monitoring: A primate study
Objective The wide-ranging manipulations to the cardiovascular system that frequently occur during cardiac surgery can expose the brain to variations in its blood supply that could prove deleterious. As a first step to developing a resource suitable for monitoring such changes, we detected the hemod...
Gespeichert in:
Veröffentlicht in: | The Journal of thoracic and cardiovascular surgery 2014-12, Vol.148 (6), p.3204-3210.e2 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3210.e2 |
---|---|
container_issue | 6 |
container_start_page | 3204 |
container_title | The Journal of thoracic and cardiovascular surgery |
container_volume | 148 |
creator | Lee, Daniel C., MD Gevorgyan, Tigran, MD Graber, Harry L., PhD Pfeil, Douglas S., PhD Xu, Yong, PhD Mangla, Sundeep, MD Barone, Frank C., PhD Libien, Jenny, MD, PhD Charchaflieh, Jean, MD, MPH, DrPH Kral, John G., MD, PhD Ramirez, Sergio A., MD Simpson, LeRone, MD Barbour, Randall L., PhD |
description | Objective The wide-ranging manipulations to the cardiovascular system that frequently occur during cardiac surgery can expose the brain to variations in its blood supply that could prove deleterious. As a first step to developing a resource suitable for monitoring such changes, we detected the hemodynamic events induced in the brain of a primate model, using high-density near-infrared spectroscopy combined with tomographic reconstruction methods and validated the findings using established radiologic and histologic techniques. Methods Continuous monitoring of the relative changes in the components of the cerebral hemoglobin signal was performed using high-density near-infrared spectroscopy (270 source-detector channel array) in anesthetized bonnet macaques with the brain exposed to induced ischemia and other acute events. A comparative analysis (exact binomial test) applied to reconstructed 3-dimensional images before and after the events and between cerebral hemispheres, combined with postprocedure magnetic resonance imaging, and postmortem histopathologic examination of the macaques' brains was performed to document and validate the spatial features revealed by the optical findings. Results Relative changes in the measured and calculated components of the hemoglobin signal, in response to the performed manipulations, revealed substantial concurrence among the reconstructed 3-dimensional images, magnetic resonance imaging of the macaques' brains, and postmortem histopathologic examination findings. Concurrence was seen when the manipulated hemoglobin concentration and associated oxygenation levels were either increased or decreased, and whether they were bilateral or restricted to a specified hemisphere. Conclusions Continuous near-infrared spectroscopy tomography has been shown to accurately capture and localize cerebral ischemia, vasodilatation, and hemorrhage in primates in real time. These findings are directly applicable to clinical intraoperative functional cerebral monitoring. |
doi_str_mv | 10.1016/j.jtcvs.2014.07.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652380485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0022522314010125</els_id><sourcerecordid>1652380485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-3884b5479bd3473b6d995d4beacb02f6fd9f02eb9efad24c5f5d8de8578acda13</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEokvhFyAhH7kktR07iZFAqipKkSpxACRulmOPi0PWDrazIv8eb7dw4MJp5vDezLxvquolwQ3BpLuYminrQ2ooJqzBfYMZeVTtCBZ93Q382-NqhzGlNae0PauepTRhjHtMxNPqjHLWCk7Frvp1DSq50c0ubyhY5EHF2nkbVQSD0gI6x5B0WJxGOezDXVTL9w3ZEJHzOaqwQFTZHQDZ1evsglcz0hBhjKXZB-9yiM7fvUGXaIlurzKglFezPa-eWDUnePFQz6uv1--_XN3Ut58-fLy6vK014yLX7TCwkbNejKZlfTt2Rghu2AhKj5jazhphMYVRgFWGMs0tN4OBgfeD0kaR9rx6fZq7xPBzhZTl3iUN86w8hDVJ0nHaDpgNvEjbk1SXyCmClfcXx00SLI_I5STvkcsjcol7WZAX16uHBeu4B_PX84dxEbw9CaDEPDiIMmkHXoNxseCVJrj_LHj3j1_Pzjut5h-wQZrCGgv0kkQmKrH8fPz68emE4TKT8vY3EaOsmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652380485</pqid></control><display><type>article</type><title>Feasibility of near-infrared spectroscopic tomography for intraoperative functional cerebral monitoring: A primate study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Daniel C., MD ; Gevorgyan, Tigran, MD ; Graber, Harry L., PhD ; Pfeil, Douglas S., PhD ; Xu, Yong, PhD ; Mangla, Sundeep, MD ; Barone, Frank C., PhD ; Libien, Jenny, MD, PhD ; Charchaflieh, Jean, MD, MPH, DrPH ; Kral, John G., MD, PhD ; Ramirez, Sergio A., MD ; Simpson, LeRone, MD ; Barbour, Randall L., PhD</creator><creatorcontrib>Lee, Daniel C., MD ; Gevorgyan, Tigran, MD ; Graber, Harry L., PhD ; Pfeil, Douglas S., PhD ; Xu, Yong, PhD ; Mangla, Sundeep, MD ; Barone, Frank C., PhD ; Libien, Jenny, MD, PhD ; Charchaflieh, Jean, MD, MPH, DrPH ; Kral, John G., MD, PhD ; Ramirez, Sergio A., MD ; Simpson, LeRone, MD ; Barbour, Randall L., PhD</creatorcontrib><description>Objective The wide-ranging manipulations to the cardiovascular system that frequently occur during cardiac surgery can expose the brain to variations in its blood supply that could prove deleterious. As a first step to developing a resource suitable for monitoring such changes, we detected the hemodynamic events induced in the brain of a primate model, using high-density near-infrared spectroscopy combined with tomographic reconstruction methods and validated the findings using established radiologic and histologic techniques. Methods Continuous monitoring of the relative changes in the components of the cerebral hemoglobin signal was performed using high-density near-infrared spectroscopy (270 source-detector channel array) in anesthetized bonnet macaques with the brain exposed to induced ischemia and other acute events. A comparative analysis (exact binomial test) applied to reconstructed 3-dimensional images before and after the events and between cerebral hemispheres, combined with postprocedure magnetic resonance imaging, and postmortem histopathologic examination of the macaques' brains was performed to document and validate the spatial features revealed by the optical findings. Results Relative changes in the measured and calculated components of the hemoglobin signal, in response to the performed manipulations, revealed substantial concurrence among the reconstructed 3-dimensional images, magnetic resonance imaging of the macaques' brains, and postmortem histopathologic examination findings. Concurrence was seen when the manipulated hemoglobin concentration and associated oxygenation levels were either increased or decreased, and whether they were bilateral or restricted to a specified hemisphere. Conclusions Continuous near-infrared spectroscopy tomography has been shown to accurately capture and localize cerebral ischemia, vasodilatation, and hemorrhage in primates in real time. These findings are directly applicable to clinical intraoperative functional cerebral monitoring.</description><identifier>ISSN: 0022-5223</identifier><identifier>EISSN: 1097-685X</identifier><identifier>DOI: 10.1016/j.jtcvs.2014.07.041</identifier><identifier>PMID: 25439529</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomarkers - blood ; Brain - blood supply ; Brain Ischemia - blood ; Brain Ischemia - diagnosis ; Brain Ischemia - physiopathology ; Cardiothoracic Surgery ; Cerebrovascular Circulation ; Disease Models, Animal ; Feasibility Studies ; Female ; Hemodynamics ; Hemoglobins - metabolism ; Image Interpretation, Computer-Assisted ; Macaca radiata ; Magnetic Resonance Imaging ; Male ; Monitoring, Intraoperative - methods ; Predictive Value of Tests ; Reproducibility of Results ; Spectroscopy, Near-Infrared ; Stroke - blood ; Stroke - diagnosis ; Stroke - physiopathology ; Subarachnoid Hemorrhage - blood ; Subarachnoid Hemorrhage - diagnosis ; Subarachnoid Hemorrhage - physiopathology ; Time Factors ; Tomography, Optical</subject><ispartof>The Journal of thoracic and cardiovascular surgery, 2014-12, Vol.148 (6), p.3204-3210.e2</ispartof><rights>The American Association for Thoracic Surgery</rights><rights>2014 The American Association for Thoracic Surgery</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-3884b5479bd3473b6d995d4beacb02f6fd9f02eb9efad24c5f5d8de8578acda13</citedby><cites>FETCH-LOGICAL-c459t-3884b5479bd3473b6d995d4beacb02f6fd9f02eb9efad24c5f5d8de8578acda13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022522314010125$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25439529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Daniel C., MD</creatorcontrib><creatorcontrib>Gevorgyan, Tigran, MD</creatorcontrib><creatorcontrib>Graber, Harry L., PhD</creatorcontrib><creatorcontrib>Pfeil, Douglas S., PhD</creatorcontrib><creatorcontrib>Xu, Yong, PhD</creatorcontrib><creatorcontrib>Mangla, Sundeep, MD</creatorcontrib><creatorcontrib>Barone, Frank C., PhD</creatorcontrib><creatorcontrib>Libien, Jenny, MD, PhD</creatorcontrib><creatorcontrib>Charchaflieh, Jean, MD, MPH, DrPH</creatorcontrib><creatorcontrib>Kral, John G., MD, PhD</creatorcontrib><creatorcontrib>Ramirez, Sergio A., MD</creatorcontrib><creatorcontrib>Simpson, LeRone, MD</creatorcontrib><creatorcontrib>Barbour, Randall L., PhD</creatorcontrib><title>Feasibility of near-infrared spectroscopic tomography for intraoperative functional cerebral monitoring: A primate study</title><title>The Journal of thoracic and cardiovascular surgery</title><addtitle>J Thorac Cardiovasc Surg</addtitle><description>Objective The wide-ranging manipulations to the cardiovascular system that frequently occur during cardiac surgery can expose the brain to variations in its blood supply that could prove deleterious. As a first step to developing a resource suitable for monitoring such changes, we detected the hemodynamic events induced in the brain of a primate model, using high-density near-infrared spectroscopy combined with tomographic reconstruction methods and validated the findings using established radiologic and histologic techniques. Methods Continuous monitoring of the relative changes in the components of the cerebral hemoglobin signal was performed using high-density near-infrared spectroscopy (270 source-detector channel array) in anesthetized bonnet macaques with the brain exposed to induced ischemia and other acute events. A comparative analysis (exact binomial test) applied to reconstructed 3-dimensional images before and after the events and between cerebral hemispheres, combined with postprocedure magnetic resonance imaging, and postmortem histopathologic examination of the macaques' brains was performed to document and validate the spatial features revealed by the optical findings. Results Relative changes in the measured and calculated components of the hemoglobin signal, in response to the performed manipulations, revealed substantial concurrence among the reconstructed 3-dimensional images, magnetic resonance imaging of the macaques' brains, and postmortem histopathologic examination findings. Concurrence was seen when the manipulated hemoglobin concentration and associated oxygenation levels were either increased or decreased, and whether they were bilateral or restricted to a specified hemisphere. Conclusions Continuous near-infrared spectroscopy tomography has been shown to accurately capture and localize cerebral ischemia, vasodilatation, and hemorrhage in primates in real time. These findings are directly applicable to clinical intraoperative functional cerebral monitoring.</description><subject>Animals</subject><subject>Biomarkers - blood</subject><subject>Brain - blood supply</subject><subject>Brain Ischemia - blood</subject><subject>Brain Ischemia - diagnosis</subject><subject>Brain Ischemia - physiopathology</subject><subject>Cardiothoracic Surgery</subject><subject>Cerebrovascular Circulation</subject><subject>Disease Models, Animal</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Hemodynamics</subject><subject>Hemoglobins - metabolism</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Macaca radiata</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Monitoring, Intraoperative - methods</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Stroke - blood</subject><subject>Stroke - diagnosis</subject><subject>Stroke - physiopathology</subject><subject>Subarachnoid Hemorrhage - blood</subject><subject>Subarachnoid Hemorrhage - diagnosis</subject><subject>Subarachnoid Hemorrhage - physiopathology</subject><subject>Time Factors</subject><subject>Tomography, Optical</subject><issn>0022-5223</issn><issn>1097-685X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEokvhFyAhH7kktR07iZFAqipKkSpxACRulmOPi0PWDrazIv8eb7dw4MJp5vDezLxvquolwQ3BpLuYminrQ2ooJqzBfYMZeVTtCBZ93Q382-NqhzGlNae0PauepTRhjHtMxNPqjHLWCk7Frvp1DSq50c0ubyhY5EHF2nkbVQSD0gI6x5B0WJxGOezDXVTL9w3ZEJHzOaqwQFTZHQDZ1evsglcz0hBhjKXZB-9yiM7fvUGXaIlurzKglFezPa-eWDUnePFQz6uv1--_XN3Ut58-fLy6vK014yLX7TCwkbNejKZlfTt2Rghu2AhKj5jazhphMYVRgFWGMs0tN4OBgfeD0kaR9rx6fZq7xPBzhZTl3iUN86w8hDVJ0nHaDpgNvEjbk1SXyCmClfcXx00SLI_I5STvkcsjcol7WZAX16uHBeu4B_PX84dxEbw9CaDEPDiIMmkHXoNxseCVJrj_LHj3j1_Pzjut5h-wQZrCGgv0kkQmKrH8fPz68emE4TKT8vY3EaOsmQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lee, Daniel C., MD</creator><creator>Gevorgyan, Tigran, MD</creator><creator>Graber, Harry L., PhD</creator><creator>Pfeil, Douglas S., PhD</creator><creator>Xu, Yong, PhD</creator><creator>Mangla, Sundeep, MD</creator><creator>Barone, Frank C., PhD</creator><creator>Libien, Jenny, MD, PhD</creator><creator>Charchaflieh, Jean, MD, MPH, DrPH</creator><creator>Kral, John G., MD, PhD</creator><creator>Ramirez, Sergio A., MD</creator><creator>Simpson, LeRone, MD</creator><creator>Barbour, Randall L., PhD</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20141201</creationdate><title>Feasibility of near-infrared spectroscopic tomography for intraoperative functional cerebral monitoring: A primate study</title><author>Lee, Daniel C., MD ; Gevorgyan, Tigran, MD ; Graber, Harry L., PhD ; Pfeil, Douglas S., PhD ; Xu, Yong, PhD ; Mangla, Sundeep, MD ; Barone, Frank C., PhD ; Libien, Jenny, MD, PhD ; Charchaflieh, Jean, MD, MPH, DrPH ; Kral, John G., MD, PhD ; Ramirez, Sergio A., MD ; Simpson, LeRone, MD ; Barbour, Randall L., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-3884b5479bd3473b6d995d4beacb02f6fd9f02eb9efad24c5f5d8de8578acda13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biomarkers - blood</topic><topic>Brain - blood supply</topic><topic>Brain Ischemia - blood</topic><topic>Brain Ischemia - diagnosis</topic><topic>Brain Ischemia - physiopathology</topic><topic>Cardiothoracic Surgery</topic><topic>Cerebrovascular Circulation</topic><topic>Disease Models, Animal</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Hemodynamics</topic><topic>Hemoglobins - metabolism</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Macaca radiata</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Monitoring, Intraoperative - methods</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Stroke - blood</topic><topic>Stroke - diagnosis</topic><topic>Stroke - physiopathology</topic><topic>Subarachnoid Hemorrhage - blood</topic><topic>Subarachnoid Hemorrhage - diagnosis</topic><topic>Subarachnoid Hemorrhage - physiopathology</topic><topic>Time Factors</topic><topic>Tomography, Optical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Daniel C., MD</creatorcontrib><creatorcontrib>Gevorgyan, Tigran, MD</creatorcontrib><creatorcontrib>Graber, Harry L., PhD</creatorcontrib><creatorcontrib>Pfeil, Douglas S., PhD</creatorcontrib><creatorcontrib>Xu, Yong, PhD</creatorcontrib><creatorcontrib>Mangla, Sundeep, MD</creatorcontrib><creatorcontrib>Barone, Frank C., PhD</creatorcontrib><creatorcontrib>Libien, Jenny, MD, PhD</creatorcontrib><creatorcontrib>Charchaflieh, Jean, MD, MPH, DrPH</creatorcontrib><creatorcontrib>Kral, John G., MD, PhD</creatorcontrib><creatorcontrib>Ramirez, Sergio A., MD</creatorcontrib><creatorcontrib>Simpson, LeRone, MD</creatorcontrib><creatorcontrib>Barbour, Randall L., PhD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Daniel C., MD</au><au>Gevorgyan, Tigran, MD</au><au>Graber, Harry L., PhD</au><au>Pfeil, Douglas S., PhD</au><au>Xu, Yong, PhD</au><au>Mangla, Sundeep, MD</au><au>Barone, Frank C., PhD</au><au>Libien, Jenny, MD, PhD</au><au>Charchaflieh, Jean, MD, MPH, DrPH</au><au>Kral, John G., MD, PhD</au><au>Ramirez, Sergio A., MD</au><au>Simpson, LeRone, MD</au><au>Barbour, Randall L., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of near-infrared spectroscopic tomography for intraoperative functional cerebral monitoring: A primate study</atitle><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle><addtitle>J Thorac Cardiovasc Surg</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>148</volume><issue>6</issue><spage>3204</spage><epage>3210.e2</epage><pages>3204-3210.e2</pages><issn>0022-5223</issn><eissn>1097-685X</eissn><abstract>Objective The wide-ranging manipulations to the cardiovascular system that frequently occur during cardiac surgery can expose the brain to variations in its blood supply that could prove deleterious. As a first step to developing a resource suitable for monitoring such changes, we detected the hemodynamic events induced in the brain of a primate model, using high-density near-infrared spectroscopy combined with tomographic reconstruction methods and validated the findings using established radiologic and histologic techniques. Methods Continuous monitoring of the relative changes in the components of the cerebral hemoglobin signal was performed using high-density near-infrared spectroscopy (270 source-detector channel array) in anesthetized bonnet macaques with the brain exposed to induced ischemia and other acute events. A comparative analysis (exact binomial test) applied to reconstructed 3-dimensional images before and after the events and between cerebral hemispheres, combined with postprocedure magnetic resonance imaging, and postmortem histopathologic examination of the macaques' brains was performed to document and validate the spatial features revealed by the optical findings. Results Relative changes in the measured and calculated components of the hemoglobin signal, in response to the performed manipulations, revealed substantial concurrence among the reconstructed 3-dimensional images, magnetic resonance imaging of the macaques' brains, and postmortem histopathologic examination findings. Concurrence was seen when the manipulated hemoglobin concentration and associated oxygenation levels were either increased or decreased, and whether they were bilateral or restricted to a specified hemisphere. Conclusions Continuous near-infrared spectroscopy tomography has been shown to accurately capture and localize cerebral ischemia, vasodilatation, and hemorrhage in primates in real time. These findings are directly applicable to clinical intraoperative functional cerebral monitoring.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25439529</pmid><doi>10.1016/j.jtcvs.2014.07.041</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5223 |
ispartof | The Journal of thoracic and cardiovascular surgery, 2014-12, Vol.148 (6), p.3204-3210.e2 |
issn | 0022-5223 1097-685X |
language | eng |
recordid | cdi_proquest_miscellaneous_1652380485 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Biomarkers - blood Brain - blood supply Brain Ischemia - blood Brain Ischemia - diagnosis Brain Ischemia - physiopathology Cardiothoracic Surgery Cerebrovascular Circulation Disease Models, Animal Feasibility Studies Female Hemodynamics Hemoglobins - metabolism Image Interpretation, Computer-Assisted Macaca radiata Magnetic Resonance Imaging Male Monitoring, Intraoperative - methods Predictive Value of Tests Reproducibility of Results Spectroscopy, Near-Infrared Stroke - blood Stroke - diagnosis Stroke - physiopathology Subarachnoid Hemorrhage - blood Subarachnoid Hemorrhage - diagnosis Subarachnoid Hemorrhage - physiopathology Time Factors Tomography, Optical |
title | Feasibility of near-infrared spectroscopic tomography for intraoperative functional cerebral monitoring: A primate study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20near-infrared%20spectroscopic%20tomography%20for%20intraoperative%20functional%20cerebral%20monitoring:%20A%20primate%20study&rft.jtitle=The%20Journal%20of%20thoracic%20and%20cardiovascular%20surgery&rft.au=Lee,%20Daniel%20C.,%20MD&rft.date=2014-12-01&rft.volume=148&rft.issue=6&rft.spage=3204&rft.epage=3210.e2&rft.pages=3204-3210.e2&rft.issn=0022-5223&rft.eissn=1097-685X&rft_id=info:doi/10.1016/j.jtcvs.2014.07.041&rft_dat=%3Cproquest_cross%3E1652380485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652380485&rft_id=info:pmid/25439529&rft_els_id=1_s2_0_S0022522314010125&rfr_iscdi=true |