BILATERAL COUNTERPARTY RISK UNDER FUNDING CONSTRAINTS-PART II: CVA

The correction in value of an over‐the‐counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend‐paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2015-01, Vol.25 (1), p.23-50
1. Verfasser: Crepey, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 23
container_title Mathematical finance
container_volume 25
creator Crepey, Stéphane
description The correction in value of an over‐the‐counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend‐paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze the structure of this correction, the so‐called Credit Valuation Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits, and funding cost/benefits. We develop a reduced‐form backward stochastic differential equations (BSDE) approach to the problem of pricing and hedging the CVA. In the Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of semilinear partial differential equations.
doi_str_mv 10.1111/mafi.12005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652367584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652367584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5385-a6e2e5fbefe9ef63fa8ffa96046b91ae5743226733021a23fec24241723a52133</originalsourceid><addsrcrecordid>eNp9kE9PwkAQxTdGExG9-AmaeDEmxf2_rbeKgI21mFJEvWyWZjcpAsUuRPn2LlY9eHAuM8n83uTNA-AUwQ5ydblQpuwgDCHbAy1EufDDkLN90IIhhz7iWByCI2tnEEJKqWiB6-s4ifJeFiVedzhO3fQQZfmzl8WjO2-c3vQyr-9anA7cPh3lWRSn-cjfQV4cX3ndx-gYHBg1t_rku7fBuN_Lu7d-MhzE3SjxC0YC5iuusWZmqo0OteHEqMAY5WxRPg2R0kxQgjEXhECMFCZGF5hiigQmimFESBucN3dXdfW20XYtF6Ut9HyulrraWIk4w4QLFlCHnv1BZ9WmXjp3jqIsIFBQ5KiLhirqytpaG7mqy4WqtxJBuYtT7uKUX3E6GDXweznX239IeR_14x-N32hKu9YfvxpVv0r3p2Bykg5kGGQvfTZB8ol8An_mfmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645830741</pqid></control><display><type>article</type><title>BILATERAL COUNTERPARTY RISK UNDER FUNDING CONSTRAINTS-PART II: CVA</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Crepey, Stéphane</creator><creatorcontrib>Crepey, Stéphane</creatorcontrib><description>The correction in value of an over‐the‐counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend‐paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze the structure of this correction, the so‐called Credit Valuation Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits, and funding cost/benefits. We develop a reduced‐form backward stochastic differential equations (BSDE) approach to the problem of pricing and hedging the CVA. In the Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of semilinear partial differential equations.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/mafi.12005</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Adjustment costs ; backward stochastic differential equation ; counterparty risk ; credit valuation adjustment ; Derivatives ; Finance ; Funding ; funding costs ; Hedging ; Mathematics ; Over the counter trading ; Partial differential equations ; Price differentiation ; Pricing ; Risk ; Stochastic processes ; Studies ; Valuation</subject><ispartof>Mathematical finance, 2015-01, Vol.25 (1), p.23-50</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5385-a6e2e5fbefe9ef63fa8ffa96046b91ae5743226733021a23fec24241723a52133</citedby><cites>FETCH-LOGICAL-c5385-a6e2e5fbefe9ef63fa8ffa96046b91ae5743226733021a23fec24241723a52133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmafi.12005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmafi.12005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Crepey, Stéphane</creatorcontrib><title>BILATERAL COUNTERPARTY RISK UNDER FUNDING CONSTRAINTS-PART II: CVA</title><title>Mathematical finance</title><addtitle>Mathematical Finance</addtitle><description>The correction in value of an over‐the‐counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend‐paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze the structure of this correction, the so‐called Credit Valuation Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits, and funding cost/benefits. We develop a reduced‐form backward stochastic differential equations (BSDE) approach to the problem of pricing and hedging the CVA. In the Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of semilinear partial differential equations.</description><subject>Adjustment costs</subject><subject>backward stochastic differential equation</subject><subject>counterparty risk</subject><subject>credit valuation adjustment</subject><subject>Derivatives</subject><subject>Finance</subject><subject>Funding</subject><subject>funding costs</subject><subject>Hedging</subject><subject>Mathematics</subject><subject>Over the counter trading</subject><subject>Partial differential equations</subject><subject>Price differentiation</subject><subject>Pricing</subject><subject>Risk</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Valuation</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwkAQxTdGExG9-AmaeDEmxf2_rbeKgI21mFJEvWyWZjcpAsUuRPn2LlY9eHAuM8n83uTNA-AUwQ5ydblQpuwgDCHbAy1EufDDkLN90IIhhz7iWByCI2tnEEJKqWiB6-s4ifJeFiVedzhO3fQQZfmzl8WjO2-c3vQyr-9anA7cPh3lWRSn-cjfQV4cX3ndx-gYHBg1t_rku7fBuN_Lu7d-MhzE3SjxC0YC5iuusWZmqo0OteHEqMAY5WxRPg2R0kxQgjEXhECMFCZGF5hiigQmimFESBucN3dXdfW20XYtF6Ut9HyulrraWIk4w4QLFlCHnv1BZ9WmXjp3jqIsIFBQ5KiLhirqytpaG7mqy4WqtxJBuYtT7uKUX3E6GDXweznX239IeR_14x-N32hKu9YfvxpVv0r3p2Bykg5kGGQvfTZB8ol8An_mfmw</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Crepey, Stéphane</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201501</creationdate><title>BILATERAL COUNTERPARTY RISK UNDER FUNDING CONSTRAINTS-PART II: CVA</title><author>Crepey, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5385-a6e2e5fbefe9ef63fa8ffa96046b91ae5743226733021a23fec24241723a52133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjustment costs</topic><topic>backward stochastic differential equation</topic><topic>counterparty risk</topic><topic>credit valuation adjustment</topic><topic>Derivatives</topic><topic>Finance</topic><topic>Funding</topic><topic>funding costs</topic><topic>Hedging</topic><topic>Mathematics</topic><topic>Over the counter trading</topic><topic>Partial differential equations</topic><topic>Price differentiation</topic><topic>Pricing</topic><topic>Risk</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crepey, Stéphane</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crepey, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BILATERAL COUNTERPARTY RISK UNDER FUNDING CONSTRAINTS-PART II: CVA</atitle><jtitle>Mathematical finance</jtitle><addtitle>Mathematical Finance</addtitle><date>2015-01</date><risdate>2015</risdate><volume>25</volume><issue>1</issue><spage>23</spage><epage>50</epage><pages>23-50</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>The correction in value of an over‐the‐counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend‐paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze the structure of this correction, the so‐called Credit Valuation Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits, and funding cost/benefits. We develop a reduced‐form backward stochastic differential equations (BSDE) approach to the problem of pricing and hedging the CVA. In the Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of semilinear partial differential equations.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/mafi.12005</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1627
ispartof Mathematical finance, 2015-01, Vol.25 (1), p.23-50
issn 0960-1627
1467-9965
language eng
recordid cdi_proquest_miscellaneous_1652367584
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Adjustment costs
backward stochastic differential equation
counterparty risk
credit valuation adjustment
Derivatives
Finance
Funding
funding costs
Hedging
Mathematics
Over the counter trading
Partial differential equations
Price differentiation
Pricing
Risk
Stochastic processes
Studies
Valuation
title BILATERAL COUNTERPARTY RISK UNDER FUNDING CONSTRAINTS-PART II: CVA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BILATERAL%20COUNTERPARTY%20RISK%20UNDER%20FUNDING%20CONSTRAINTS-PART%20II:%20CVA&rft.jtitle=Mathematical%20finance&rft.au=Crepey,%20St%C3%A9phane&rft.date=2015-01&rft.volume=25&rft.issue=1&rft.spage=23&rft.epage=50&rft.pages=23-50&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/mafi.12005&rft_dat=%3Cproquest_cross%3E1652367584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645830741&rft_id=info:pmid/&rfr_iscdi=true