Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra
Evolution of droplet size distribution (DSD) due to the water vapor diffusion in a vertically moving adiabatic parcels is investigated. Analytical expressions for height dependences of the main DSD parameters and DSD moments are obtained. The asymptotic behavior of the DSD parameters at large height...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2014-11, Vol.119 (22), p.12,872-12,887 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12,887 |
---|---|
container_issue | 22 |
container_start_page | 12,872 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 119 |
creator | Pinsky, M. Mazin, I. P. Korolev, A. Khain, A. |
description | Evolution of droplet size distribution (DSD) due to the water vapor diffusion in a vertically moving adiabatic parcels is investigated. Analytical expressions for height dependences of the main DSD parameters and DSD moments are obtained. The asymptotic behavior of the DSD parameters at large heights above cloud base is determined. It is shown that during diffusion growth, the width and the relative dispersion of the DSD decrease with height as z− 1/3 and z− 2/3, respectively. The paper presents examples of DSD evolution in cases DSD forms on aerosols with a three‐mode lognormal distribution. The aerosol distribution parameters used in the study correspond to four aerosol types: “Marine,” “Clean continental,” “Background,” and extremely polluted “Urban.” The vertical profiles of DSD parameters are compared with the asymptotic profiles. It is shown that in case of polydisperse DSD evolution, the vertical profile of supersaturation within several hundred meters above the cloud base can be approximated by a supersaturation profile corresponding to the “equivalent” monodisperse DSD. The initial radius of this equivalent DSD is equal to the mean radius of polydisperse DSD (haze size distribution) at cloud base, which is estimated using the Kohler theory. This result of the relation between the polydisperse and monodisperse solutions is universal. A new equation for estimation of supersaturation maximum for polydisperse case is obtained. The obtained analytical expressions and numerical results are useful for understanding the mechanisms of DSD formation in clouds and for parameterization of warm microphysical processes in cloud models.
Key Points
Expressions for vertical dependencies of DSD moments are derivedExpressions for vertical profiles of supersaturation are derivedThere is a similarity between the profiles in polydisperse and monodisperse cases |
doi_str_mv | 10.1002/2014JD021885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651458610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642611416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4778-dcb6fc411a3fc5598efb024ead53f5a7aeb9e388974246a08631473ccad90a7e3</originalsourceid><addsrcrecordid>eNqNkU1PGzEQhlcVlYqAGz_AUi89dMGz_tzeEB8BFFFaQEVcLMf2FlMTJ_auIP8eJ6lQ1QNiLjMjPfPOq5mq2gW8Bxg3-w0Gen6EG5CSfag2G-BtLduWb7zW4vZTtZPzAy4hMaGMblY3V8PMpaz7IenexynSU4us77ohl04HZFOcBdej3yk-9ffIT1Hw88FbZEIcbP6GLmNYWJ-XKg6VZPqkt6uPnQ7Z7fzNW9XNyfH14Wk9_j46OzwY14YKIWtrJrwzFECTzjDWStdNcEOdtox0TAvtJq0jsjinDeUaS06ACmKMti3WwpGt6stad5bifHC5V48-GxeCnro4ZAWcAWWSA34HShsOQIEX9PN_6EMcUjlGVg3HmJCWgnyLKlqMFL3V2q9ryqSYc3KdmiX_qNNCAVbLv6l__1ZwssaffHCLN1l1Pvp5xECurNTrKZ979_w6pdMfxQURTP26GKkrcXc7vvwxUnfkBeJ2p4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645364210</pqid></control><display><type>article</type><title>Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Pinsky, M. ; Mazin, I. P. ; Korolev, A. ; Khain, A.</creator><creatorcontrib>Pinsky, M. ; Mazin, I. P. ; Korolev, A. ; Khain, A.</creatorcontrib><description>Evolution of droplet size distribution (DSD) due to the water vapor diffusion in a vertically moving adiabatic parcels is investigated. Analytical expressions for height dependences of the main DSD parameters and DSD moments are obtained. The asymptotic behavior of the DSD parameters at large heights above cloud base is determined. It is shown that during diffusion growth, the width and the relative dispersion of the DSD decrease with height as z− 1/3 and z− 2/3, respectively. The paper presents examples of DSD evolution in cases DSD forms on aerosols with a three‐mode lognormal distribution. The aerosol distribution parameters used in the study correspond to four aerosol types: “Marine,” “Clean continental,” “Background,” and extremely polluted “Urban.” The vertical profiles of DSD parameters are compared with the asymptotic profiles. It is shown that in case of polydisperse DSD evolution, the vertical profile of supersaturation within several hundred meters above the cloud base can be approximated by a supersaturation profile corresponding to the “equivalent” monodisperse DSD. The initial radius of this equivalent DSD is equal to the mean radius of polydisperse DSD (haze size distribution) at cloud base, which is estimated using the Kohler theory. This result of the relation between the polydisperse and monodisperse solutions is universal. A new equation for estimation of supersaturation maximum for polydisperse case is obtained. The obtained analytical expressions and numerical results are useful for understanding the mechanisms of DSD formation in clouds and for parameterization of warm microphysical processes in cloud models.
Key Points
Expressions for vertical dependencies of DSD moments are derivedExpressions for vertical profiles of supersaturation are derivedThere is a similarity between the profiles in polydisperse and monodisperse cases</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2014JD021885</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Adiabatic ; adiabatic processes ; Aerosols ; Asymptotic properties ; Cloud droplet growth ; Cloud droplet size ; Cloud formation ; Cloud models ; Clouds ; Deforestation ; Diffusion ; diffusional growth ; Droplets ; Economic models ; Equivalence ; Evolution ; Exact solutions ; Geophysics ; Haze ; Height ; liquid clouds ; Marine aerosols ; Marine pollution ; Mathematical analysis ; Mathematical models ; Parameterization ; Parameters ; Size distribution ; Supersaturation ; Vertical profiles ; Water vapor ; Water vapor diffusion ; Water vapour</subject><ispartof>Journal of geophysical research. Atmospheres, 2014-11, Vol.119 (22), p.12,872-12,887</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4778-dcb6fc411a3fc5598efb024ead53f5a7aeb9e388974246a08631473ccad90a7e3</citedby><cites>FETCH-LOGICAL-c4778-dcb6fc411a3fc5598efb024ead53f5a7aeb9e388974246a08631473ccad90a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JD021885$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JD021885$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Pinsky, M.</creatorcontrib><creatorcontrib>Mazin, I. P.</creatorcontrib><creatorcontrib>Korolev, A.</creatorcontrib><creatorcontrib>Khain, A.</creatorcontrib><title>Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Evolution of droplet size distribution (DSD) due to the water vapor diffusion in a vertically moving adiabatic parcels is investigated. Analytical expressions for height dependences of the main DSD parameters and DSD moments are obtained. The asymptotic behavior of the DSD parameters at large heights above cloud base is determined. It is shown that during diffusion growth, the width and the relative dispersion of the DSD decrease with height as z− 1/3 and z− 2/3, respectively. The paper presents examples of DSD evolution in cases DSD forms on aerosols with a three‐mode lognormal distribution. The aerosol distribution parameters used in the study correspond to four aerosol types: “Marine,” “Clean continental,” “Background,” and extremely polluted “Urban.” The vertical profiles of DSD parameters are compared with the asymptotic profiles. It is shown that in case of polydisperse DSD evolution, the vertical profile of supersaturation within several hundred meters above the cloud base can be approximated by a supersaturation profile corresponding to the “equivalent” monodisperse DSD. The initial radius of this equivalent DSD is equal to the mean radius of polydisperse DSD (haze size distribution) at cloud base, which is estimated using the Kohler theory. This result of the relation between the polydisperse and monodisperse solutions is universal. A new equation for estimation of supersaturation maximum for polydisperse case is obtained. The obtained analytical expressions and numerical results are useful for understanding the mechanisms of DSD formation in clouds and for parameterization of warm microphysical processes in cloud models.
Key Points
Expressions for vertical dependencies of DSD moments are derivedExpressions for vertical profiles of supersaturation are derivedThere is a similarity between the profiles in polydisperse and monodisperse cases</description><subject>Adiabatic</subject><subject>adiabatic processes</subject><subject>Aerosols</subject><subject>Asymptotic properties</subject><subject>Cloud droplet growth</subject><subject>Cloud droplet size</subject><subject>Cloud formation</subject><subject>Cloud models</subject><subject>Clouds</subject><subject>Deforestation</subject><subject>Diffusion</subject><subject>diffusional growth</subject><subject>Droplets</subject><subject>Economic models</subject><subject>Equivalence</subject><subject>Evolution</subject><subject>Exact solutions</subject><subject>Geophysics</subject><subject>Haze</subject><subject>Height</subject><subject>liquid clouds</subject><subject>Marine aerosols</subject><subject>Marine pollution</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Size distribution</subject><subject>Supersaturation</subject><subject>Vertical profiles</subject><subject>Water vapor</subject><subject>Water vapor diffusion</subject><subject>Water vapour</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PGzEQhlcVlYqAGz_AUi89dMGz_tzeEB8BFFFaQEVcLMf2FlMTJ_auIP8eJ6lQ1QNiLjMjPfPOq5mq2gW8Bxg3-w0Gen6EG5CSfag2G-BtLduWb7zW4vZTtZPzAy4hMaGMblY3V8PMpaz7IenexynSU4us77ohl04HZFOcBdej3yk-9ffIT1Hw88FbZEIcbP6GLmNYWJ-XKg6VZPqkt6uPnQ7Z7fzNW9XNyfH14Wk9_j46OzwY14YKIWtrJrwzFECTzjDWStdNcEOdtox0TAvtJq0jsjinDeUaS06ACmKMti3WwpGt6stad5bifHC5V48-GxeCnro4ZAWcAWWSA34HShsOQIEX9PN_6EMcUjlGVg3HmJCWgnyLKlqMFL3V2q9ryqSYc3KdmiX_qNNCAVbLv6l__1ZwssaffHCLN1l1Pvp5xECurNTrKZ979_w6pdMfxQURTP26GKkrcXc7vvwxUnfkBeJ2p4A</recordid><startdate>20141127</startdate><enddate>20141127</enddate><creator>Pinsky, M.</creator><creator>Mazin, I. P.</creator><creator>Korolev, A.</creator><creator>Khain, A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20141127</creationdate><title>Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra</title><author>Pinsky, M. ; Mazin, I. P. ; Korolev, A. ; Khain, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4778-dcb6fc411a3fc5598efb024ead53f5a7aeb9e388974246a08631473ccad90a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adiabatic</topic><topic>adiabatic processes</topic><topic>Aerosols</topic><topic>Asymptotic properties</topic><topic>Cloud droplet growth</topic><topic>Cloud droplet size</topic><topic>Cloud formation</topic><topic>Cloud models</topic><topic>Clouds</topic><topic>Deforestation</topic><topic>Diffusion</topic><topic>diffusional growth</topic><topic>Droplets</topic><topic>Economic models</topic><topic>Equivalence</topic><topic>Evolution</topic><topic>Exact solutions</topic><topic>Geophysics</topic><topic>Haze</topic><topic>Height</topic><topic>liquid clouds</topic><topic>Marine aerosols</topic><topic>Marine pollution</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Size distribution</topic><topic>Supersaturation</topic><topic>Vertical profiles</topic><topic>Water vapor</topic><topic>Water vapor diffusion</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinsky, M.</creatorcontrib><creatorcontrib>Mazin, I. P.</creatorcontrib><creatorcontrib>Korolev, A.</creatorcontrib><creatorcontrib>Khain, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinsky, M.</au><au>Mazin, I. P.</au><au>Korolev, A.</au><au>Khain, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2014-11-27</date><risdate>2014</risdate><volume>119</volume><issue>22</issue><spage>12,872</spage><epage>12,887</epage><pages>12,872-12,887</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Evolution of droplet size distribution (DSD) due to the water vapor diffusion in a vertically moving adiabatic parcels is investigated. Analytical expressions for height dependences of the main DSD parameters and DSD moments are obtained. The asymptotic behavior of the DSD parameters at large heights above cloud base is determined. It is shown that during diffusion growth, the width and the relative dispersion of the DSD decrease with height as z− 1/3 and z− 2/3, respectively. The paper presents examples of DSD evolution in cases DSD forms on aerosols with a three‐mode lognormal distribution. The aerosol distribution parameters used in the study correspond to four aerosol types: “Marine,” “Clean continental,” “Background,” and extremely polluted “Urban.” The vertical profiles of DSD parameters are compared with the asymptotic profiles. It is shown that in case of polydisperse DSD evolution, the vertical profile of supersaturation within several hundred meters above the cloud base can be approximated by a supersaturation profile corresponding to the “equivalent” monodisperse DSD. The initial radius of this equivalent DSD is equal to the mean radius of polydisperse DSD (haze size distribution) at cloud base, which is estimated using the Kohler theory. This result of the relation between the polydisperse and monodisperse solutions is universal. A new equation for estimation of supersaturation maximum for polydisperse case is obtained. The obtained analytical expressions and numerical results are useful for understanding the mechanisms of DSD formation in clouds and for parameterization of warm microphysical processes in cloud models.
Key Points
Expressions for vertical dependencies of DSD moments are derivedExpressions for vertical profiles of supersaturation are derivedThere is a similarity between the profiles in polydisperse and monodisperse cases</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JD021885</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2014-11, Vol.119 (22), p.12,872-12,887 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651458610 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Adiabatic adiabatic processes Aerosols Asymptotic properties Cloud droplet growth Cloud droplet size Cloud formation Cloud models Clouds Deforestation Diffusion diffusional growth Droplets Economic models Equivalence Evolution Exact solutions Geophysics Haze Height liquid clouds Marine aerosols Marine pollution Mathematical analysis Mathematical models Parameterization Parameters Size distribution Supersaturation Vertical profiles Water vapor Water vapor diffusion Water vapour |
title | Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supersaturation%20and%20diffusional%20droplet%20growth%20in%20liquid%20clouds:%20Polydisperse%20spectra&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Pinsky,%20M.&rft.date=2014-11-27&rft.volume=119&rft.issue=22&rft.spage=12,872&rft.epage=12,887&rft.pages=12,872-12,887&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2014JD021885&rft_dat=%3Cproquest_cross%3E1642611416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645364210&rft_id=info:pmid/&rfr_iscdi=true |