Search performance improvement of Particle Swarm Optimization by second best particle information

In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-11, Vol.246, p.346-354
Hauptverfasser: Shin, Young-Bin, Kita, Eisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue
container_start_page 346
container_title Applied mathematics and computation
container_volume 246
creator Shin, Young-Bin
Kita, Eisuke
description In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been ever found by all particles and the best particle which has been ever found by each particle, respectively. The aim of this study is to discuss that, in addition to the information of the global and personal best particles, the use of the information of the second global best and second personal best particles improves the search performance of the original PSO. Firstly, two algorithms are explained. One updates the particle positions by the positions of the global best, the personal best and second global best particles. Another uses second personal best particles instead of second global best particle. The present algorithms are compared with 6 PSO algorithms in 11 test functions. The results show that the present algorithms have the faster convergence speed and find better optimal solution than other algorithms. Therefore, it is concluded that the use of the second best particles can improve the search performance of the original PSO algorithm.
doi_str_mv 10.1016/j.amc.2014.08.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651457002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314011072</els_id><sourcerecordid>1651457002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-5854e9a7a22e9e6423f80228a74dd6d798f1c0dc9043c6b855c66f62b10f46793</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZJMwfsRxxApVvKRKRSqsLceZCFd5YadF8PWkFLasZnPu1Z1DyCWDlAFT15vUti7lwGQKOgUmjsiM6VwkmZLFMZkBFCoRAOKUnMW4AYBcMTkjdo02uDc6YKj70NrOIfXtEPodttiNtK_psw2jdw3S9YcNLV0No2_9lx1939Hyk0Z0fVfREuNIhz_Udz9te-acnNS2iXjxe-fk9f7uZfGYLFcPT4vbZeKEgDHJdCaxsLnlHAtUkotaA-fa5rKqVJUXumYOKleAFE6VOsucUrXiJYNaqrwQc3J16J3Gv2-nNab10WHT2A77bTRMZUxmOQCfUHZAXehjDFibIfjWhk_DwOx1mo2ZdJq9TgPaTDqnzM0hg9MPO4_BROdx0lX5gG40Ve__SX8DoBJ-Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651457002</pqid></control><display><type>article</type><title>Search performance improvement of Particle Swarm Optimization by second best particle information</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shin, Young-Bin ; Kita, Eisuke</creator><creatorcontrib>Shin, Young-Bin ; Kita, Eisuke</creatorcontrib><description>In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been ever found by all particles and the best particle which has been ever found by each particle, respectively. The aim of this study is to discuss that, in addition to the information of the global and personal best particles, the use of the information of the second global best and second personal best particles improves the search performance of the original PSO. Firstly, two algorithms are explained. One updates the particle positions by the positions of the global best, the personal best and second global best particles. Another uses second personal best particles instead of second global best particle. The present algorithms are compared with 6 PSO algorithms in 11 test functions. The results show that the present algorithms have the faster convergence speed and find better optimal solution than other algorithms. Therefore, it is concluded that the use of the second best particles can improve the search performance of the original PSO algorithm.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.08.013</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Global best particle ; Mathematical analysis ; Mathematical models ; Optimization ; Particle Swarm Optimization ; Performance enhancement ; Personal best particle ; Searching ; Second global best particle ; Second personal best particle ; Swarm intelligence ; Vectors (mathematics)</subject><ispartof>Applied mathematics and computation, 2014-11, Vol.246, p.346-354</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-5854e9a7a22e9e6423f80228a74dd6d798f1c0dc9043c6b855c66f62b10f46793</citedby><cites>FETCH-LOGICAL-c330t-5854e9a7a22e9e6423f80228a74dd6d798f1c0dc9043c6b855c66f62b10f46793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2014.08.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Shin, Young-Bin</creatorcontrib><creatorcontrib>Kita, Eisuke</creatorcontrib><title>Search performance improvement of Particle Swarm Optimization by second best particle information</title><title>Applied mathematics and computation</title><description>In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been ever found by all particles and the best particle which has been ever found by each particle, respectively. The aim of this study is to discuss that, in addition to the information of the global and personal best particles, the use of the information of the second global best and second personal best particles improves the search performance of the original PSO. Firstly, two algorithms are explained. One updates the particle positions by the positions of the global best, the personal best and second global best particles. Another uses second personal best particles instead of second global best particle. The present algorithms are compared with 6 PSO algorithms in 11 test functions. The results show that the present algorithms have the faster convergence speed and find better optimal solution than other algorithms. Therefore, it is concluded that the use of the second best particles can improve the search performance of the original PSO algorithm.</description><subject>Algorithms</subject><subject>Global best particle</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Particle Swarm Optimization</subject><subject>Performance enhancement</subject><subject>Personal best particle</subject><subject>Searching</subject><subject>Second global best particle</subject><subject>Second personal best particle</subject><subject>Swarm intelligence</subject><subject>Vectors (mathematics)</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZJMwfsRxxApVvKRKRSqsLceZCFd5YadF8PWkFLasZnPu1Z1DyCWDlAFT15vUti7lwGQKOgUmjsiM6VwkmZLFMZkBFCoRAOKUnMW4AYBcMTkjdo02uDc6YKj70NrOIfXtEPodttiNtK_psw2jdw3S9YcNLV0No2_9lx1939Hyk0Z0fVfREuNIhz_Udz9te-acnNS2iXjxe-fk9f7uZfGYLFcPT4vbZeKEgDHJdCaxsLnlHAtUkotaA-fa5rKqVJUXumYOKleAFE6VOsucUrXiJYNaqrwQc3J16J3Gv2-nNab10WHT2A77bTRMZUxmOQCfUHZAXehjDFibIfjWhk_DwOx1mo2ZdJq9TgPaTDqnzM0hg9MPO4_BROdx0lX5gG40Ve__SX8DoBJ-Mg</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Shin, Young-Bin</creator><creator>Kita, Eisuke</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141101</creationdate><title>Search performance improvement of Particle Swarm Optimization by second best particle information</title><author>Shin, Young-Bin ; Kita, Eisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-5854e9a7a22e9e6423f80228a74dd6d798f1c0dc9043c6b855c66f62b10f46793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Global best particle</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Particle Swarm Optimization</topic><topic>Performance enhancement</topic><topic>Personal best particle</topic><topic>Searching</topic><topic>Second global best particle</topic><topic>Second personal best particle</topic><topic>Swarm intelligence</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Young-Bin</creatorcontrib><creatorcontrib>Kita, Eisuke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Young-Bin</au><au>Kita, Eisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Search performance improvement of Particle Swarm Optimization by second best particle information</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>246</volume><spage>346</spage><epage>354</epage><pages>346-354</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been ever found by all particles and the best particle which has been ever found by each particle, respectively. The aim of this study is to discuss that, in addition to the information of the global and personal best particles, the use of the information of the second global best and second personal best particles improves the search performance of the original PSO. Firstly, two algorithms are explained. One updates the particle positions by the positions of the global best, the personal best and second global best particles. Another uses second personal best particles instead of second global best particle. The present algorithms are compared with 6 PSO algorithms in 11 test functions. The results show that the present algorithms have the faster convergence speed and find better optimal solution than other algorithms. Therefore, it is concluded that the use of the second best particles can improve the search performance of the original PSO algorithm.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.08.013</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-11, Vol.246, p.346-354
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1651457002
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Global best particle
Mathematical analysis
Mathematical models
Optimization
Particle Swarm Optimization
Performance enhancement
Personal best particle
Searching
Second global best particle
Second personal best particle
Swarm intelligence
Vectors (mathematics)
title Search performance improvement of Particle Swarm Optimization by second best particle information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Search%20performance%20improvement%20of%20Particle%20Swarm%20Optimization%20by%20second%20best%20particle%20information&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Shin,%20Young-Bin&rft.date=2014-11-01&rft.volume=246&rft.spage=346&rft.epage=354&rft.pages=346-354&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.08.013&rft_dat=%3Cproquest_cross%3E1651457002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651457002&rft_id=info:pmid/&rft_els_id=S0096300314011072&rfr_iscdi=true