Search performance improvement of Particle Swarm Optimization by second best particle information
In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been e...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2014-11, Vol.246, p.346-354 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | |
container_start_page | 346 |
container_title | Applied mathematics and computation |
container_volume | 246 |
creator | Shin, Young-Bin Kita, Eisuke |
description | In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been ever found by all particles and the best particle which has been ever found by each particle, respectively.
The aim of this study is to discuss that, in addition to the information of the global and personal best particles, the use of the information of the second global best and second personal best particles improves the search performance of the original PSO. Firstly, two algorithms are explained. One updates the particle positions by the positions of the global best, the personal best and second global best particles. Another uses second personal best particles instead of second global best particle. The present algorithms are compared with 6 PSO algorithms in 11 test functions. The results show that the present algorithms have the faster convergence speed and find better optimal solution than other algorithms. Therefore, it is concluded that the use of the second best particles can improve the search performance of the original PSO algorithm. |
doi_str_mv | 10.1016/j.amc.2014.08.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651457002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314011072</els_id><sourcerecordid>1651457002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-5854e9a7a22e9e6423f80228a74dd6d798f1c0dc9043c6b855c66f62b10f46793</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZJMwfsRxxApVvKRKRSqsLceZCFd5YadF8PWkFLasZnPu1Z1DyCWDlAFT15vUti7lwGQKOgUmjsiM6VwkmZLFMZkBFCoRAOKUnMW4AYBcMTkjdo02uDc6YKj70NrOIfXtEPodttiNtK_psw2jdw3S9YcNLV0No2_9lx1939Hyk0Z0fVfREuNIhz_Udz9te-acnNS2iXjxe-fk9f7uZfGYLFcPT4vbZeKEgDHJdCaxsLnlHAtUkotaA-fa5rKqVJUXumYOKleAFE6VOsucUrXiJYNaqrwQc3J16J3Gv2-nNab10WHT2A77bTRMZUxmOQCfUHZAXehjDFibIfjWhk_DwOx1mo2ZdJq9TgPaTDqnzM0hg9MPO4_BROdx0lX5gG40Ve__SX8DoBJ-Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651457002</pqid></control><display><type>article</type><title>Search performance improvement of Particle Swarm Optimization by second best particle information</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shin, Young-Bin ; Kita, Eisuke</creator><creatorcontrib>Shin, Young-Bin ; Kita, Eisuke</creatorcontrib><description>In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been ever found by all particles and the best particle which has been ever found by each particle, respectively.
The aim of this study is to discuss that, in addition to the information of the global and personal best particles, the use of the information of the second global best and second personal best particles improves the search performance of the original PSO. Firstly, two algorithms are explained. One updates the particle positions by the positions of the global best, the personal best and second global best particles. Another uses second personal best particles instead of second global best particle. The present algorithms are compared with 6 PSO algorithms in 11 test functions. The results show that the present algorithms have the faster convergence speed and find better optimal solution than other algorithms. Therefore, it is concluded that the use of the second best particles can improve the search performance of the original PSO algorithm.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.08.013</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Global best particle ; Mathematical analysis ; Mathematical models ; Optimization ; Particle Swarm Optimization ; Performance enhancement ; Personal best particle ; Searching ; Second global best particle ; Second personal best particle ; Swarm intelligence ; Vectors (mathematics)</subject><ispartof>Applied mathematics and computation, 2014-11, Vol.246, p.346-354</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-5854e9a7a22e9e6423f80228a74dd6d798f1c0dc9043c6b855c66f62b10f46793</citedby><cites>FETCH-LOGICAL-c330t-5854e9a7a22e9e6423f80228a74dd6d798f1c0dc9043c6b855c66f62b10f46793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2014.08.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Shin, Young-Bin</creatorcontrib><creatorcontrib>Kita, Eisuke</creatorcontrib><title>Search performance improvement of Particle Swarm Optimization by second best particle information</title><title>Applied mathematics and computation</title><description>In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been ever found by all particles and the best particle which has been ever found by each particle, respectively.
The aim of this study is to discuss that, in addition to the information of the global and personal best particles, the use of the information of the second global best and second personal best particles improves the search performance of the original PSO. Firstly, two algorithms are explained. One updates the particle positions by the positions of the global best, the personal best and second global best particles. Another uses second personal best particles instead of second global best particle. The present algorithms are compared with 6 PSO algorithms in 11 test functions. The results show that the present algorithms have the faster convergence speed and find better optimal solution than other algorithms. Therefore, it is concluded that the use of the second best particles can improve the search performance of the original PSO algorithm.</description><subject>Algorithms</subject><subject>Global best particle</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Particle Swarm Optimization</subject><subject>Performance enhancement</subject><subject>Personal best particle</subject><subject>Searching</subject><subject>Second global best particle</subject><subject>Second personal best particle</subject><subject>Swarm intelligence</subject><subject>Vectors (mathematics)</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZJMwfsRxxApVvKRKRSqsLceZCFd5YadF8PWkFLasZnPu1Z1DyCWDlAFT15vUti7lwGQKOgUmjsiM6VwkmZLFMZkBFCoRAOKUnMW4AYBcMTkjdo02uDc6YKj70NrOIfXtEPodttiNtK_psw2jdw3S9YcNLV0No2_9lx1939Hyk0Z0fVfREuNIhz_Udz9te-acnNS2iXjxe-fk9f7uZfGYLFcPT4vbZeKEgDHJdCaxsLnlHAtUkotaA-fa5rKqVJUXumYOKleAFE6VOsucUrXiJYNaqrwQc3J16J3Gv2-nNab10WHT2A77bTRMZUxmOQCfUHZAXehjDFibIfjWhk_DwOx1mo2ZdJq9TgPaTDqnzM0hg9MPO4_BROdx0lX5gG40Ve__SX8DoBJ-Mg</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Shin, Young-Bin</creator><creator>Kita, Eisuke</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141101</creationdate><title>Search performance improvement of Particle Swarm Optimization by second best particle information</title><author>Shin, Young-Bin ; Kita, Eisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-5854e9a7a22e9e6423f80228a74dd6d798f1c0dc9043c6b855c66f62b10f46793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Global best particle</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Particle Swarm Optimization</topic><topic>Performance enhancement</topic><topic>Personal best particle</topic><topic>Searching</topic><topic>Second global best particle</topic><topic>Second personal best particle</topic><topic>Swarm intelligence</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Young-Bin</creatorcontrib><creatorcontrib>Kita, Eisuke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Young-Bin</au><au>Kita, Eisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Search performance improvement of Particle Swarm Optimization by second best particle information</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>246</volume><spage>346</spage><epage>354</epage><pages>346-354</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In the original Particle Swarm Optimization (PSO), the particle position vectors denote the potential solutions of the optimization problem. Then, the position vectors are updated from the information of the global best and the personal best particles, which denote the best particle which has been ever found by all particles and the best particle which has been ever found by each particle, respectively.
The aim of this study is to discuss that, in addition to the information of the global and personal best particles, the use of the information of the second global best and second personal best particles improves the search performance of the original PSO. Firstly, two algorithms are explained. One updates the particle positions by the positions of the global best, the personal best and second global best particles. Another uses second personal best particles instead of second global best particle. The present algorithms are compared with 6 PSO algorithms in 11 test functions. The results show that the present algorithms have the faster convergence speed and find better optimal solution than other algorithms. Therefore, it is concluded that the use of the second best particles can improve the search performance of the original PSO algorithm.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.08.013</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-11, Vol.246, p.346-354 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651457002 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Global best particle Mathematical analysis Mathematical models Optimization Particle Swarm Optimization Performance enhancement Personal best particle Searching Second global best particle Second personal best particle Swarm intelligence Vectors (mathematics) |
title | Search performance improvement of Particle Swarm Optimization by second best particle information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Search%20performance%20improvement%20of%20Particle%20Swarm%20Optimization%20by%20second%20best%20particle%20information&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Shin,%20Young-Bin&rft.date=2014-11-01&rft.volume=246&rft.spage=346&rft.epage=354&rft.pages=346-354&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.08.013&rft_dat=%3Cproquest_cross%3E1651457002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651457002&rft_id=info:pmid/&rft_els_id=S0096300314011072&rfr_iscdi=true |