Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming

A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 102...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2014-10, Vol.39 (31), p.18046-18057
Hauptverfasser: Butcher, Holly, Quenzel, Casey J.E., Breziner, Luis, Mettes, Jacques, Wilhite, Benjamin A., Bossard, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18057
container_issue 31
container_start_page 18046
container_title International journal of hydrogen energy
container_volume 39
creator Butcher, Holly
Quenzel, Casey J.E.
Breziner, Luis
Mettes, Jacques
Wilhite, Benjamin A.
Bossard, Peter
description A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented. •We report an annular microreactor for catalytic methane steam reforming.•Computational fluid dynamic models accurately predict experimental results.•Simulations identify optimal operating window for prototype AMR design.•Model used to determine hydrogen productivity, thermal efficiency and energy density.
doi_str_mv 10.1016/j.ijhydene.2014.04.109
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651454712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319914011653</els_id><sourcerecordid>1651454712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-b588b9a3ee1ce11ab4943dc855184601929e804ce62dd92c07ed2c28bb6b9fd33</originalsourceid><addsrcrecordid>eNqFUF1L7DAQDaLguvoXJC-CPnRN0rRN3q54_QJFEH0OaTJds7SpJl1h__2dZb2-CgnJDOecOXMIOeVswRmvL1eLsHrfeIiwEIzLBZPY13tkxlWji1KqZp_MWFmzouRaH5KjnFeM8YZJPSOffyGHZaRjR23EE9e9TXQILo3uHUvoaQLrpjHR86unlwva4Q-npXEJW7y_xDpv4tJm-pFGv3ZTGCP9CpYOMKEC0DyBHVAFmUOIy2Ny0Nk-w8n3Oydvtzev1_fF4_Pdw_XVY-GkElPRVkq12pYA3AHntpValt6pquJK1oxroUEx6aAW3mvhWANeOKHatm5158tyTs53umjrcw15MkPIDvoePY3rbHhdcVnJhguE1jsobp0zOjUfKQw2bQxnZpuxWZn_GZttxoZJ7Gsknn3PsNnZvks2upB_2EIpWdZ45-TPDge48FeAZLILEB34kMBNxo_ht1H_AL8elwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651454712</pqid></control><display><type>article</type><title>Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming</title><source>Elsevier ScienceDirect Journals</source><creator>Butcher, Holly ; Quenzel, Casey J.E. ; Breziner, Luis ; Mettes, Jacques ; Wilhite, Benjamin A. ; Bossard, Peter</creator><creatorcontrib>Butcher, Holly ; Quenzel, Casey J.E. ; Breziner, Luis ; Mettes, Jacques ; Wilhite, Benjamin A. ; Bossard, Peter</creatorcontrib><description>A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields &gt;98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power &amp; Energy, Inc., is presented. •We report an annular microreactor for catalytic methane steam reforming.•Computational fluid dynamic models accurately predict experimental results.•Simulations identify optimal operating window for prototype AMR design.•Model used to determine hydrogen productivity, thermal efficiency and energy density.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2014.04.109</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Annular ; Applied sciences ; Catalysts ; Design engineering ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Methane ; Methane steam reforming ; Microchannels ; Microreactor ; Natural gas ; Prototypes ; Reactors ; Simulations ; Steam electric power generation</subject><ispartof>International journal of hydrogen energy, 2014-10, Vol.39 (31), p.18046-18057</ispartof><rights>2014 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-b588b9a3ee1ce11ab4943dc855184601929e804ce62dd92c07ed2c28bb6b9fd33</citedby><cites>FETCH-LOGICAL-c482t-b588b9a3ee1ce11ab4943dc855184601929e804ce62dd92c07ed2c28bb6b9fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319914011653$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28843684$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Butcher, Holly</creatorcontrib><creatorcontrib>Quenzel, Casey J.E.</creatorcontrib><creatorcontrib>Breziner, Luis</creatorcontrib><creatorcontrib>Mettes, Jacques</creatorcontrib><creatorcontrib>Wilhite, Benjamin A.</creatorcontrib><creatorcontrib>Bossard, Peter</creatorcontrib><title>Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming</title><title>International journal of hydrogen energy</title><description>A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields &gt;98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power &amp; Energy, Inc., is presented. •We report an annular microreactor for catalytic methane steam reforming.•Computational fluid dynamic models accurately predict experimental results.•Simulations identify optimal operating window for prototype AMR design.•Model used to determine hydrogen productivity, thermal efficiency and energy density.</description><subject>Alternative fuels. Production and utilization</subject><subject>Annular</subject><subject>Applied sciences</subject><subject>Catalysts</subject><subject>Design engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Methane</subject><subject>Methane steam reforming</subject><subject>Microchannels</subject><subject>Microreactor</subject><subject>Natural gas</subject><subject>Prototypes</subject><subject>Reactors</subject><subject>Simulations</subject><subject>Steam electric power generation</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUF1L7DAQDaLguvoXJC-CPnRN0rRN3q54_QJFEH0OaTJds7SpJl1h__2dZb2-CgnJDOecOXMIOeVswRmvL1eLsHrfeIiwEIzLBZPY13tkxlWji1KqZp_MWFmzouRaH5KjnFeM8YZJPSOffyGHZaRjR23EE9e9TXQILo3uHUvoaQLrpjHR86unlwva4Q-npXEJW7y_xDpv4tJm-pFGv3ZTGCP9CpYOMKEC0DyBHVAFmUOIy2Ny0Nk-w8n3Oydvtzev1_fF4_Pdw_XVY-GkElPRVkq12pYA3AHntpValt6pquJK1oxroUEx6aAW3mvhWANeOKHatm5158tyTs53umjrcw15MkPIDvoePY3rbHhdcVnJhguE1jsobp0zOjUfKQw2bQxnZpuxWZn_GZttxoZJ7Gsknn3PsNnZvks2upB_2EIpWdZ45-TPDge48FeAZLILEB34kMBNxo_ht1H_AL8elwQ</recordid><startdate>20141022</startdate><enddate>20141022</enddate><creator>Butcher, Holly</creator><creator>Quenzel, Casey J.E.</creator><creator>Breziner, Luis</creator><creator>Mettes, Jacques</creator><creator>Wilhite, Benjamin A.</creator><creator>Bossard, Peter</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20141022</creationdate><title>Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming</title><author>Butcher, Holly ; Quenzel, Casey J.E. ; Breziner, Luis ; Mettes, Jacques ; Wilhite, Benjamin A. ; Bossard, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-b588b9a3ee1ce11ab4943dc855184601929e804ce62dd92c07ed2c28bb6b9fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Annular</topic><topic>Applied sciences</topic><topic>Catalysts</topic><topic>Design engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Methane</topic><topic>Methane steam reforming</topic><topic>Microchannels</topic><topic>Microreactor</topic><topic>Natural gas</topic><topic>Prototypes</topic><topic>Reactors</topic><topic>Simulations</topic><topic>Steam electric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butcher, Holly</creatorcontrib><creatorcontrib>Quenzel, Casey J.E.</creatorcontrib><creatorcontrib>Breziner, Luis</creatorcontrib><creatorcontrib>Mettes, Jacques</creatorcontrib><creatorcontrib>Wilhite, Benjamin A.</creatorcontrib><creatorcontrib>Bossard, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butcher, Holly</au><au>Quenzel, Casey J.E.</au><au>Breziner, Luis</au><au>Mettes, Jacques</au><au>Wilhite, Benjamin A.</au><au>Bossard, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-10-22</date><risdate>2014</risdate><volume>39</volume><issue>31</issue><spage>18046</spage><epage>18057</epage><pages>18046-18057</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields &gt;98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power &amp; Energy, Inc., is presented. •We report an annular microreactor for catalytic methane steam reforming.•Computational fluid dynamic models accurately predict experimental results.•Simulations identify optimal operating window for prototype AMR design.•Model used to determine hydrogen productivity, thermal efficiency and energy density.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2014.04.109</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2014-10, Vol.39 (31), p.18046-18057
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1651454712
source Elsevier ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Annular
Applied sciences
Catalysts
Design engineering
Energy
Exact sciences and technology
Fuels
Hydrogen
Methane
Methane steam reforming
Microchannels
Microreactor
Natural gas
Prototypes
Reactors
Simulations
Steam electric power generation
title Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20annular%20microchannel%20reactor%20(AMR)%20for%20hydrogen%20and/or%20syngas%20production%20via%20methane%20steam%20reforming&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Butcher,%20Holly&rft.date=2014-10-22&rft.volume=39&rft.issue=31&rft.spage=18046&rft.epage=18057&rft.pages=18046-18057&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2014.04.109&rft_dat=%3Cproquest_cross%3E1651454712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651454712&rft_id=info:pmid/&rft_els_id=S0360319914011653&rfr_iscdi=true