Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming
A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 102...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2014-10, Vol.39 (31), p.18046-18057 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18057 |
---|---|
container_issue | 31 |
container_start_page | 18046 |
container_title | International journal of hydrogen energy |
container_volume | 39 |
creator | Butcher, Holly Quenzel, Casey J.E. Breziner, Luis Mettes, Jacques Wilhite, Benjamin A. Bossard, Peter |
description | A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.
•We report an annular microreactor for catalytic methane steam reforming.•Computational fluid dynamic models accurately predict experimental results.•Simulations identify optimal operating window for prototype AMR design.•Model used to determine hydrogen productivity, thermal efficiency and energy density. |
doi_str_mv | 10.1016/j.ijhydene.2014.04.109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651454712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319914011653</els_id><sourcerecordid>1651454712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-b588b9a3ee1ce11ab4943dc855184601929e804ce62dd92c07ed2c28bb6b9fd33</originalsourceid><addsrcrecordid>eNqFUF1L7DAQDaLguvoXJC-CPnRN0rRN3q54_QJFEH0OaTJds7SpJl1h__2dZb2-CgnJDOecOXMIOeVswRmvL1eLsHrfeIiwEIzLBZPY13tkxlWji1KqZp_MWFmzouRaH5KjnFeM8YZJPSOffyGHZaRjR23EE9e9TXQILo3uHUvoaQLrpjHR86unlwva4Q-npXEJW7y_xDpv4tJm-pFGv3ZTGCP9CpYOMKEC0DyBHVAFmUOIy2Ny0Nk-w8n3Oydvtzev1_fF4_Pdw_XVY-GkElPRVkq12pYA3AHntpValt6pquJK1oxroUEx6aAW3mvhWANeOKHatm5158tyTs53umjrcw15MkPIDvoePY3rbHhdcVnJhguE1jsobp0zOjUfKQw2bQxnZpuxWZn_GZttxoZJ7Gsknn3PsNnZvks2upB_2EIpWdZ45-TPDge48FeAZLILEB34kMBNxo_ht1H_AL8elwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651454712</pqid></control><display><type>article</type><title>Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming</title><source>Elsevier ScienceDirect Journals</source><creator>Butcher, Holly ; Quenzel, Casey J.E. ; Breziner, Luis ; Mettes, Jacques ; Wilhite, Benjamin A. ; Bossard, Peter</creator><creatorcontrib>Butcher, Holly ; Quenzel, Casey J.E. ; Breziner, Luis ; Mettes, Jacques ; Wilhite, Benjamin A. ; Bossard, Peter</creatorcontrib><description>A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.
•We report an annular microreactor for catalytic methane steam reforming.•Computational fluid dynamic models accurately predict experimental results.•Simulations identify optimal operating window for prototype AMR design.•Model used to determine hydrogen productivity, thermal efficiency and energy density.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2014.04.109</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Annular ; Applied sciences ; Catalysts ; Design engineering ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Methane ; Methane steam reforming ; Microchannels ; Microreactor ; Natural gas ; Prototypes ; Reactors ; Simulations ; Steam electric power generation</subject><ispartof>International journal of hydrogen energy, 2014-10, Vol.39 (31), p.18046-18057</ispartof><rights>2014 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-b588b9a3ee1ce11ab4943dc855184601929e804ce62dd92c07ed2c28bb6b9fd33</citedby><cites>FETCH-LOGICAL-c482t-b588b9a3ee1ce11ab4943dc855184601929e804ce62dd92c07ed2c28bb6b9fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319914011653$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28843684$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Butcher, Holly</creatorcontrib><creatorcontrib>Quenzel, Casey J.E.</creatorcontrib><creatorcontrib>Breziner, Luis</creatorcontrib><creatorcontrib>Mettes, Jacques</creatorcontrib><creatorcontrib>Wilhite, Benjamin A.</creatorcontrib><creatorcontrib>Bossard, Peter</creatorcontrib><title>Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming</title><title>International journal of hydrogen energy</title><description>A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.
•We report an annular microreactor for catalytic methane steam reforming.•Computational fluid dynamic models accurately predict experimental results.•Simulations identify optimal operating window for prototype AMR design.•Model used to determine hydrogen productivity, thermal efficiency and energy density.</description><subject>Alternative fuels. Production and utilization</subject><subject>Annular</subject><subject>Applied sciences</subject><subject>Catalysts</subject><subject>Design engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Methane</subject><subject>Methane steam reforming</subject><subject>Microchannels</subject><subject>Microreactor</subject><subject>Natural gas</subject><subject>Prototypes</subject><subject>Reactors</subject><subject>Simulations</subject><subject>Steam electric power generation</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUF1L7DAQDaLguvoXJC-CPnRN0rRN3q54_QJFEH0OaTJds7SpJl1h__2dZb2-CgnJDOecOXMIOeVswRmvL1eLsHrfeIiwEIzLBZPY13tkxlWji1KqZp_MWFmzouRaH5KjnFeM8YZJPSOffyGHZaRjR23EE9e9TXQILo3uHUvoaQLrpjHR86unlwva4Q-npXEJW7y_xDpv4tJm-pFGv3ZTGCP9CpYOMKEC0DyBHVAFmUOIy2Ny0Nk-w8n3Oydvtzev1_fF4_Pdw_XVY-GkElPRVkq12pYA3AHntpValt6pquJK1oxroUEx6aAW3mvhWANeOKHatm5158tyTs53umjrcw15MkPIDvoePY3rbHhdcVnJhguE1jsobp0zOjUfKQw2bQxnZpuxWZn_GZttxoZJ7Gsknn3PsNnZvks2upB_2EIpWdZ45-TPDge48FeAZLILEB34kMBNxo_ht1H_AL8elwQ</recordid><startdate>20141022</startdate><enddate>20141022</enddate><creator>Butcher, Holly</creator><creator>Quenzel, Casey J.E.</creator><creator>Breziner, Luis</creator><creator>Mettes, Jacques</creator><creator>Wilhite, Benjamin A.</creator><creator>Bossard, Peter</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20141022</creationdate><title>Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming</title><author>Butcher, Holly ; Quenzel, Casey J.E. ; Breziner, Luis ; Mettes, Jacques ; Wilhite, Benjamin A. ; Bossard, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-b588b9a3ee1ce11ab4943dc855184601929e804ce62dd92c07ed2c28bb6b9fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Annular</topic><topic>Applied sciences</topic><topic>Catalysts</topic><topic>Design engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Methane</topic><topic>Methane steam reforming</topic><topic>Microchannels</topic><topic>Microreactor</topic><topic>Natural gas</topic><topic>Prototypes</topic><topic>Reactors</topic><topic>Simulations</topic><topic>Steam electric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butcher, Holly</creatorcontrib><creatorcontrib>Quenzel, Casey J.E.</creatorcontrib><creatorcontrib>Breziner, Luis</creatorcontrib><creatorcontrib>Mettes, Jacques</creatorcontrib><creatorcontrib>Wilhite, Benjamin A.</creatorcontrib><creatorcontrib>Bossard, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butcher, Holly</au><au>Quenzel, Casey J.E.</au><au>Breziner, Luis</au><au>Mettes, Jacques</au><au>Wilhite, Benjamin A.</au><au>Bossard, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-10-22</date><risdate>2014</risdate><volume>39</volume><issue>31</issue><spage>18046</spage><epage>18057</epage><pages>18046-18057</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10−2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h−1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel AMRs within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.
•We report an annular microreactor for catalytic methane steam reforming.•Computational fluid dynamic models accurately predict experimental results.•Simulations identify optimal operating window for prototype AMR design.•Model used to determine hydrogen productivity, thermal efficiency and energy density.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2014.04.109</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2014-10, Vol.39 (31), p.18046-18057 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651454712 |
source | Elsevier ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Annular Applied sciences Catalysts Design engineering Energy Exact sciences and technology Fuels Hydrogen Methane Methane steam reforming Microchannels Microreactor Natural gas Prototypes Reactors Simulations Steam electric power generation |
title | Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20annular%20microchannel%20reactor%20(AMR)%20for%20hydrogen%20and/or%20syngas%20production%20via%20methane%20steam%20reforming&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Butcher,%20Holly&rft.date=2014-10-22&rft.volume=39&rft.issue=31&rft.spage=18046&rft.epage=18057&rft.pages=18046-18057&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2014.04.109&rft_dat=%3Cproquest_cross%3E1651454712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651454712&rft_id=info:pmid/&rft_els_id=S0360319914011653&rfr_iscdi=true |