SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION
A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals th...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2014-01, Vol.52 (6), p.2863-2882 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2882 |
---|---|
container_issue | 6 |
container_start_page | 2863 |
container_title | SIAM journal on numerical analysis |
container_volume | 52 |
creator | FASONDINI, M. SCHOOMBIE, S. W. |
description | A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals that a resonance effect can occur in the semidiscrete solution but not in the solution of the continuous equation. It is shown for the Fourier pseudospectral discretization that resonance can only be caused by aliased modes. The spurious semidiscrete solutions are investigated in numerical experiments and we suggest methods for avoiding spurious resonance. |
doi_str_mv | 10.1137/130947143 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651453939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24512222</jstor_id><sourcerecordid>24512222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-625af9cd6e75ddacdd8a6ec182c7f5982c2d120572ec7b1b91884fa77aa4d47c3</originalsourceid><addsrcrecordid>eNo9kL1OwzAcxC0EEqUw8ABIHmEI-O_YcTJWqdtGtDHkA8bIdRypVUtK3A5svANvyJMQVMTdcDrppxsOoWsg9wC-eACfREwA80_QAEjEPQGCnKIBIX7gAaPRObpwbk36HoI_QCp_KrNElTnOZK7SURpLnKQ4l4tknORxJguJF7KYqXGOJyrDxUziR5UV8lVOvz-_xhK_ZInMsXwuR0Wi0kt01uiNs1d_OUTlRBbxzJuraRKP5p6hjO29gHLdRKYOrOB1rU1dhzqwBkJqRMOjPmgNlHBBrRFLWEYQhqzRQmjNaiaMP0S3x91d174frNtX25UzdrPRb7Y9uAoCDoz7Ue8hujuipmud62xT7brVVncfFZDq97Tq_7SevTmya7dvu3-QMg60l_8Dbfxh1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651453939</pqid></control><display><type>article</type><title>SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>FASONDINI, M. ; SCHOOMBIE, S. W.</creator><creatorcontrib>FASONDINI, M. ; SCHOOMBIE, S. W.</creatorcontrib><description>A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals that a resonance effect can occur in the semidiscrete solution but not in the solution of the continuous equation. It is shown for the Fourier pseudospectral discretization that resonance can only be caused by aliased modes. The spurious semidiscrete solutions are investigated in numerical experiments and we suggest methods for avoiding spurious resonance.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/130947143</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Boundary conditions ; Constraining ; Derivatives ; Discretization ; Fictitious names ; Finite difference methods ; Fourier analysis ; Harmonics ; Integers ; Linearization ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Ordinary differential equations ; Spectral methods ; Zero</subject><ispartof>SIAM journal on numerical analysis, 2014-01, Vol.52 (6), p.2863-2882</ispartof><rights>Copyright ©2015 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-625af9cd6e75ddacdd8a6ec182c7f5982c2d120572ec7b1b91884fa77aa4d47c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24512222$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24512222$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>FASONDINI, M.</creatorcontrib><creatorcontrib>SCHOOMBIE, S. W.</creatorcontrib><title>SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION</title><title>SIAM journal on numerical analysis</title><description>A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals that a resonance effect can occur in the semidiscrete solution but not in the solution of the continuous equation. It is shown for the Fourier pseudospectral discretization that resonance can only be caused by aliased modes. The spurious semidiscrete solutions are investigated in numerical experiments and we suggest methods for avoiding spurious resonance.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Constraining</subject><subject>Derivatives</subject><subject>Discretization</subject><subject>Fictitious names</subject><subject>Finite difference methods</subject><subject>Fourier analysis</subject><subject>Harmonics</subject><subject>Integers</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Ordinary differential equations</subject><subject>Spectral methods</subject><subject>Zero</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAcxC0EEqUw8ABIHmEI-O_YcTJWqdtGtDHkA8bIdRypVUtK3A5svANvyJMQVMTdcDrppxsOoWsg9wC-eACfREwA80_QAEjEPQGCnKIBIX7gAaPRObpwbk36HoI_QCp_KrNElTnOZK7SURpLnKQ4l4tknORxJguJF7KYqXGOJyrDxUziR5UV8lVOvz-_xhK_ZInMsXwuR0Wi0kt01uiNs1d_OUTlRBbxzJuraRKP5p6hjO29gHLdRKYOrOB1rU1dhzqwBkJqRMOjPmgNlHBBrRFLWEYQhqzRQmjNaiaMP0S3x91d174frNtX25UzdrPRb7Y9uAoCDoz7Ue8hujuipmud62xT7brVVncfFZDq97Tq_7SevTmya7dvu3-QMg60l_8Dbfxh1g</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>FASONDINI, M.</creator><creator>SCHOOMBIE, S. W.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION</title><author>FASONDINI, M. ; SCHOOMBIE, S. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-625af9cd6e75ddacdd8a6ec182c7f5982c2d120572ec7b1b91884fa77aa4d47c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Constraining</topic><topic>Derivatives</topic><topic>Discretization</topic><topic>Fictitious names</topic><topic>Finite difference methods</topic><topic>Fourier analysis</topic><topic>Harmonics</topic><topic>Integers</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Ordinary differential equations</topic><topic>Spectral methods</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FASONDINI, M.</creatorcontrib><creatorcontrib>SCHOOMBIE, S. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FASONDINI, M.</au><au>SCHOOMBIE, S. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>52</volume><issue>6</issue><spage>2863</spage><epage>2882</epage><pages>2863-2882</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals that a resonance effect can occur in the semidiscrete solution but not in the solution of the continuous equation. It is shown for the Fourier pseudospectral discretization that resonance can only be caused by aliased modes. The spurious semidiscrete solutions are investigated in numerical experiments and we suggest methods for avoiding spurious resonance.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130947143</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2014-01, Vol.52 (6), p.2863-2882 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651453939 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Approximation Boundary conditions Constraining Derivatives Discretization Fictitious names Finite difference methods Fourier analysis Harmonics Integers Linearization Mathematical analysis Mathematical models Numerical analysis Ordinary differential equations Spectral methods Zero |
title | SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPURIOUS%20RESONANCE%20IN%20SEMIDISCRETE%20METHODS%20FOR%20THE%20KORTEWEG%E2%80%93DE%20VRIES%20EQUATION&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=FASONDINI,%20M.&rft.date=2014-01-01&rft.volume=52&rft.issue=6&rft.spage=2863&rft.epage=2882&rft.pages=2863-2882&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/130947143&rft_dat=%3Cjstor_proqu%3E24512222%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651453939&rft_id=info:pmid/&rft_jstor_id=24512222&rfr_iscdi=true |