SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION

A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2014-01, Vol.52 (6), p.2863-2882
Hauptverfasser: FASONDINI, M., SCHOOMBIE, S. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2882
container_issue 6
container_start_page 2863
container_title SIAM journal on numerical analysis
container_volume 52
creator FASONDINI, M.
SCHOOMBIE, S. W.
description A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals that a resonance effect can occur in the semidiscrete solution but not in the solution of the continuous equation. It is shown for the Fourier pseudospectral discretization that resonance can only be caused by aliased modes. The spurious semidiscrete solutions are investigated in numerical experiments and we suggest methods for avoiding spurious resonance.
doi_str_mv 10.1137/130947143
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651453939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24512222</jstor_id><sourcerecordid>24512222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-625af9cd6e75ddacdd8a6ec182c7f5982c2d120572ec7b1b91884fa77aa4d47c3</originalsourceid><addsrcrecordid>eNo9kL1OwzAcxC0EEqUw8ABIHmEI-O_YcTJWqdtGtDHkA8bIdRypVUtK3A5svANvyJMQVMTdcDrppxsOoWsg9wC-eACfREwA80_QAEjEPQGCnKIBIX7gAaPRObpwbk36HoI_QCp_KrNElTnOZK7SURpLnKQ4l4tknORxJguJF7KYqXGOJyrDxUziR5UV8lVOvz-_xhK_ZInMsXwuR0Wi0kt01uiNs1d_OUTlRBbxzJuraRKP5p6hjO29gHLdRKYOrOB1rU1dhzqwBkJqRMOjPmgNlHBBrRFLWEYQhqzRQmjNaiaMP0S3x91d174frNtX25UzdrPRb7Y9uAoCDoz7Ue8hujuipmud62xT7brVVncfFZDq97Tq_7SevTmya7dvu3-QMg60l_8Dbfxh1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651453939</pqid></control><display><type>article</type><title>SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>FASONDINI, M. ; SCHOOMBIE, S. W.</creator><creatorcontrib>FASONDINI, M. ; SCHOOMBIE, S. W.</creatorcontrib><description>A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals that a resonance effect can occur in the semidiscrete solution but not in the solution of the continuous equation. It is shown for the Fourier pseudospectral discretization that resonance can only be caused by aliased modes. The spurious semidiscrete solutions are investigated in numerical experiments and we suggest methods for avoiding spurious resonance.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/130947143</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Boundary conditions ; Constraining ; Derivatives ; Discretization ; Fictitious names ; Finite difference methods ; Fourier analysis ; Harmonics ; Integers ; Linearization ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Ordinary differential equations ; Spectral methods ; Zero</subject><ispartof>SIAM journal on numerical analysis, 2014-01, Vol.52 (6), p.2863-2882</ispartof><rights>Copyright ©2015 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-625af9cd6e75ddacdd8a6ec182c7f5982c2d120572ec7b1b91884fa77aa4d47c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24512222$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24512222$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>FASONDINI, M.</creatorcontrib><creatorcontrib>SCHOOMBIE, S. W.</creatorcontrib><title>SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION</title><title>SIAM journal on numerical analysis</title><description>A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals that a resonance effect can occur in the semidiscrete solution but not in the solution of the continuous equation. It is shown for the Fourier pseudospectral discretization that resonance can only be caused by aliased modes. The spurious semidiscrete solutions are investigated in numerical experiments and we suggest methods for avoiding spurious resonance.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Constraining</subject><subject>Derivatives</subject><subject>Discretization</subject><subject>Fictitious names</subject><subject>Finite difference methods</subject><subject>Fourier analysis</subject><subject>Harmonics</subject><subject>Integers</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Ordinary differential equations</subject><subject>Spectral methods</subject><subject>Zero</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAcxC0EEqUw8ABIHmEI-O_YcTJWqdtGtDHkA8bIdRypVUtK3A5svANvyJMQVMTdcDrppxsOoWsg9wC-eACfREwA80_QAEjEPQGCnKIBIX7gAaPRObpwbk36HoI_QCp_KrNElTnOZK7SURpLnKQ4l4tknORxJguJF7KYqXGOJyrDxUziR5UV8lVOvz-_xhK_ZInMsXwuR0Wi0kt01uiNs1d_OUTlRBbxzJuraRKP5p6hjO29gHLdRKYOrOB1rU1dhzqwBkJqRMOjPmgNlHBBrRFLWEYQhqzRQmjNaiaMP0S3x91d174frNtX25UzdrPRb7Y9uAoCDoz7Ue8hujuipmud62xT7brVVncfFZDq97Tq_7SevTmya7dvu3-QMg60l_8Dbfxh1g</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>FASONDINI, M.</creator><creator>SCHOOMBIE, S. W.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION</title><author>FASONDINI, M. ; SCHOOMBIE, S. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-625af9cd6e75ddacdd8a6ec182c7f5982c2d120572ec7b1b91884fa77aa4d47c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Constraining</topic><topic>Derivatives</topic><topic>Discretization</topic><topic>Fictitious names</topic><topic>Finite difference methods</topic><topic>Fourier analysis</topic><topic>Harmonics</topic><topic>Integers</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Ordinary differential equations</topic><topic>Spectral methods</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FASONDINI, M.</creatorcontrib><creatorcontrib>SCHOOMBIE, S. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FASONDINI, M.</au><au>SCHOOMBIE, S. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>52</volume><issue>6</issue><spage>2863</spage><epage>2882</epage><pages>2863-2882</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>A multiple scales analysis of semidiscrete methods for the Korteweg–de Vries equation is conducted. Methods that approximate the spatial derivatives by finite differences with arbitrary order accuracy and the limiting method, the Fourier pseudospectral method, are considered. The analysis reveals that a resonance effect can occur in the semidiscrete solution but not in the solution of the continuous equation. It is shown for the Fourier pseudospectral discretization that resonance can only be caused by aliased modes. The spurious semidiscrete solutions are investigated in numerical experiments and we suggest methods for avoiding spurious resonance.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130947143</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2014-01, Vol.52 (6), p.2863-2882
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_1651453939
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Approximation
Boundary conditions
Constraining
Derivatives
Discretization
Fictitious names
Finite difference methods
Fourier analysis
Harmonics
Integers
Linearization
Mathematical analysis
Mathematical models
Numerical analysis
Ordinary differential equations
Spectral methods
Zero
title SPURIOUS RESONANCE IN SEMIDISCRETE METHODS FOR THE KORTEWEG–DE VRIES EQUATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPURIOUS%20RESONANCE%20IN%20SEMIDISCRETE%20METHODS%20FOR%20THE%20KORTEWEG%E2%80%93DE%20VRIES%20EQUATION&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=FASONDINI,%20M.&rft.date=2014-01-01&rft.volume=52&rft.issue=6&rft.spage=2863&rft.epage=2882&rft.pages=2863-2882&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/130947143&rft_dat=%3Cjstor_proqu%3E24512222%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651453939&rft_id=info:pmid/&rft_jstor_id=24512222&rfr_iscdi=true