Analyzing convergence performance of evolutionary algorithms: A statistical approach

•Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2014-12, Vol.289, p.41-58
Hauptverfasser: Derrac, Joaquín, García, Salvador, Hui, Sheldon, Suganthan, Ponnuthurai Nagaratnam, Herrera, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 41
container_title Information sciences
container_volume 289
creator Derrac, Joaquín
García, Salvador
Hui, Sheldon
Suganthan, Ponnuthurai Nagaratnam
Herrera, Francisco
description •Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of the tests. The analysis of the performance of different approaches is a staple concern in the design of Computational Intelligence experiments. Any proper analysis of evolutionary optimization algorithms should incorporate a full set of benchmark problems and state-of-the-art comparison algorithms. For the sake of rigor, such an analysis may be completed with the use of statistical procedures, supporting the conclusions drawn. In this paper, we point out that these conclusions are usually limited to the final results, whereas intermediate results are seldom considered. We propose a new methodology for comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s trend test. The methodology is presented with a case of use, incorporating real results from selected techniques of a recent special issue. The possible applications of the method are highlighted, particularly in those cases in which the final results do not enable a clear evaluation of the differences among several evolutionary techniques.
doi_str_mv 10.1016/j.ins.2014.06.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651453495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025514006276</els_id><sourcerecordid>1651453495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-916cc7fdad3bd896803439355447bd0f0ac3fb2d09ed517821403f56066b3d983</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gysiSc44_EMFUVX1IlljJbju20rpK42G6l8utJVGamu-F97vQ-CN1jKDBg_rgr3BCLEjAtgBcA4gLNcF2VOS8FvkQzgBJyKBm7Rjcx7gCAVpzP0HoxqO7044ZNpv1wtGFjB22zvQ2tD72adt9m9ui7Q3J-UOGUqW7jg0vbPj5liywmlVxMTqsuU_t98Epvb9FVq7po7_7mHH29vqyX7_nq8-1juVjlmgiecoG51lVrlCGNqQWvgVAiCGOUVo2BFpQmbVMaENYwXNUlpkBaxoHzhhhRkzl6ON8d334fbEyyd1HbrlOD9YcoMWeYMkIFG6P4HNXBxxhsK_fB9WMdiUFOBuVOjgblZFACl6PBkXk-M3bscHQ2yKjdpMe4YHWSxrt_6F_rZXoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651453495</pqid></control><display><type>article</type><title>Analyzing convergence performance of evolutionary algorithms: A statistical approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Derrac, Joaquín ; García, Salvador ; Hui, Sheldon ; Suganthan, Ponnuthurai Nagaratnam ; Herrera, Francisco</creator><creatorcontrib>Derrac, Joaquín ; García, Salvador ; Hui, Sheldon ; Suganthan, Ponnuthurai Nagaratnam ; Herrera, Francisco</creatorcontrib><description>•Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of the tests. The analysis of the performance of different approaches is a staple concern in the design of Computational Intelligence experiments. Any proper analysis of evolutionary optimization algorithms should incorporate a full set of benchmark problems and state-of-the-art comparison algorithms. For the sake of rigor, such an analysis may be completed with the use of statistical procedures, supporting the conclusions drawn. In this paper, we point out that these conclusions are usually limited to the final results, whereas intermediate results are seldom considered. We propose a new methodology for comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s trend test. The methodology is presented with a case of use, incorporating real results from selected techniques of a recent special issue. The possible applications of the method are highlighted, particularly in those cases in which the final results do not enable a clear evaluation of the differences among several evolutionary techniques.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2014.06.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Convergence ; Convergence-based algorithmic comparison ; Design engineering ; Evolutionary ; Evolutionary algorithms ; Methodology ; Nonparametric tests ; Optimization ; Page’s trend test ; Staples</subject><ispartof>Information sciences, 2014-12, Vol.289, p.41-58</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-916cc7fdad3bd896803439355447bd0f0ac3fb2d09ed517821403f56066b3d983</citedby><cites>FETCH-LOGICAL-c396t-916cc7fdad3bd896803439355447bd0f0ac3fb2d09ed517821403f56066b3d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2014.06.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><creatorcontrib>Hui, Sheldon</creatorcontrib><creatorcontrib>Suganthan, Ponnuthurai Nagaratnam</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><title>Analyzing convergence performance of evolutionary algorithms: A statistical approach</title><title>Information sciences</title><description>•Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of the tests. The analysis of the performance of different approaches is a staple concern in the design of Computational Intelligence experiments. Any proper analysis of evolutionary optimization algorithms should incorporate a full set of benchmark problems and state-of-the-art comparison algorithms. For the sake of rigor, such an analysis may be completed with the use of statistical procedures, supporting the conclusions drawn. In this paper, we point out that these conclusions are usually limited to the final results, whereas intermediate results are seldom considered. We propose a new methodology for comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s trend test. The methodology is presented with a case of use, incorporating real results from selected techniques of a recent special issue. The possible applications of the method are highlighted, particularly in those cases in which the final results do not enable a clear evaluation of the differences among several evolutionary techniques.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Convergence-based algorithmic comparison</subject><subject>Design engineering</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Methodology</subject><subject>Nonparametric tests</subject><subject>Optimization</subject><subject>Page’s trend test</subject><subject>Staples</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gysiSc44_EMFUVX1IlljJbju20rpK42G6l8utJVGamu-F97vQ-CN1jKDBg_rgr3BCLEjAtgBcA4gLNcF2VOS8FvkQzgBJyKBm7Rjcx7gCAVpzP0HoxqO7044ZNpv1wtGFjB22zvQ2tD72adt9m9ui7Q3J-UOGUqW7jg0vbPj5liywmlVxMTqsuU_t98Epvb9FVq7po7_7mHH29vqyX7_nq8-1juVjlmgiecoG51lVrlCGNqQWvgVAiCGOUVo2BFpQmbVMaENYwXNUlpkBaxoHzhhhRkzl6ON8d334fbEyyd1HbrlOD9YcoMWeYMkIFG6P4HNXBxxhsK_fB9WMdiUFOBuVOjgblZFACl6PBkXk-M3bscHQ2yKjdpMe4YHWSxrt_6F_rZXoI</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Derrac, Joaquín</creator><creator>García, Salvador</creator><creator>Hui, Sheldon</creator><creator>Suganthan, Ponnuthurai Nagaratnam</creator><creator>Herrera, Francisco</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>Analyzing convergence performance of evolutionary algorithms: A statistical approach</title><author>Derrac, Joaquín ; García, Salvador ; Hui, Sheldon ; Suganthan, Ponnuthurai Nagaratnam ; Herrera, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-916cc7fdad3bd896803439355447bd0f0ac3fb2d09ed517821403f56066b3d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Convergence-based algorithmic comparison</topic><topic>Design engineering</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Methodology</topic><topic>Nonparametric tests</topic><topic>Optimization</topic><topic>Page’s trend test</topic><topic>Staples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><creatorcontrib>Hui, Sheldon</creatorcontrib><creatorcontrib>Suganthan, Ponnuthurai Nagaratnam</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derrac, Joaquín</au><au>García, Salvador</au><au>Hui, Sheldon</au><au>Suganthan, Ponnuthurai Nagaratnam</au><au>Herrera, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing convergence performance of evolutionary algorithms: A statistical approach</atitle><jtitle>Information sciences</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>289</volume><spage>41</spage><epage>58</epage><pages>41-58</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>•Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of the tests. The analysis of the performance of different approaches is a staple concern in the design of Computational Intelligence experiments. Any proper analysis of evolutionary optimization algorithms should incorporate a full set of benchmark problems and state-of-the-art comparison algorithms. For the sake of rigor, such an analysis may be completed with the use of statistical procedures, supporting the conclusions drawn. In this paper, we point out that these conclusions are usually limited to the final results, whereas intermediate results are seldom considered. We propose a new methodology for comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s trend test. The methodology is presented with a case of use, incorporating real results from selected techniques of a recent special issue. The possible applications of the method are highlighted, particularly in those cases in which the final results do not enable a clear evaluation of the differences among several evolutionary techniques.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2014.06.009</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2014-12, Vol.289, p.41-58
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1651453495
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Convergence
Convergence-based algorithmic comparison
Design engineering
Evolutionary
Evolutionary algorithms
Methodology
Nonparametric tests
Optimization
Page’s trend test
Staples
title Analyzing convergence performance of evolutionary algorithms: A statistical approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20convergence%20performance%20of%20evolutionary%20algorithms:%20A%20statistical%20approach&rft.jtitle=Information%20sciences&rft.au=Derrac,%20Joaqu%C3%ADn&rft.date=2014-12-01&rft.volume=289&rft.spage=41&rft.epage=58&rft.pages=41-58&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2014.06.009&rft_dat=%3Cproquest_cross%3E1651453495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651453495&rft_id=info:pmid/&rft_els_id=S0020025514006276&rfr_iscdi=true