Analyzing convergence performance of evolutionary algorithms: A statistical approach
•Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of t...
Gespeichert in:
Veröffentlicht in: | Information sciences 2014-12, Vol.289, p.41-58 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | |
container_start_page | 41 |
container_title | Information sciences |
container_volume | 289 |
creator | Derrac, Joaquín García, Salvador Hui, Sheldon Suganthan, Ponnuthurai Nagaratnam Herrera, Francisco |
description | •Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of the tests.
The analysis of the performance of different approaches is a staple concern in the design of Computational Intelligence experiments. Any proper analysis of evolutionary optimization algorithms should incorporate a full set of benchmark problems and state-of-the-art comparison algorithms. For the sake of rigor, such an analysis may be completed with the use of statistical procedures, supporting the conclusions drawn.
In this paper, we point out that these conclusions are usually limited to the final results, whereas intermediate results are seldom considered. We propose a new methodology for comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s trend test. The methodology is presented with a case of use, incorporating real results from selected techniques of a recent special issue. The possible applications of the method are highlighted, particularly in those cases in which the final results do not enable a clear evaluation of the differences among several evolutionary techniques. |
doi_str_mv | 10.1016/j.ins.2014.06.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651453495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025514006276</els_id><sourcerecordid>1651453495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-916cc7fdad3bd896803439355447bd0f0ac3fb2d09ed517821403f56066b3d983</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gysiSc44_EMFUVX1IlljJbju20rpK42G6l8utJVGamu-F97vQ-CN1jKDBg_rgr3BCLEjAtgBcA4gLNcF2VOS8FvkQzgBJyKBm7Rjcx7gCAVpzP0HoxqO7044ZNpv1wtGFjB22zvQ2tD72adt9m9ui7Q3J-UOGUqW7jg0vbPj5liywmlVxMTqsuU_t98Epvb9FVq7po7_7mHH29vqyX7_nq8-1juVjlmgiecoG51lVrlCGNqQWvgVAiCGOUVo2BFpQmbVMaENYwXNUlpkBaxoHzhhhRkzl6ON8d334fbEyyd1HbrlOD9YcoMWeYMkIFG6P4HNXBxxhsK_fB9WMdiUFOBuVOjgblZFACl6PBkXk-M3bscHQ2yKjdpMe4YHWSxrt_6F_rZXoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651453495</pqid></control><display><type>article</type><title>Analyzing convergence performance of evolutionary algorithms: A statistical approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Derrac, Joaquín ; García, Salvador ; Hui, Sheldon ; Suganthan, Ponnuthurai Nagaratnam ; Herrera, Francisco</creator><creatorcontrib>Derrac, Joaquín ; García, Salvador ; Hui, Sheldon ; Suganthan, Ponnuthurai Nagaratnam ; Herrera, Francisco</creatorcontrib><description>•Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of the tests.
The analysis of the performance of different approaches is a staple concern in the design of Computational Intelligence experiments. Any proper analysis of evolutionary optimization algorithms should incorporate a full set of benchmark problems and state-of-the-art comparison algorithms. For the sake of rigor, such an analysis may be completed with the use of statistical procedures, supporting the conclusions drawn.
In this paper, we point out that these conclusions are usually limited to the final results, whereas intermediate results are seldom considered. We propose a new methodology for comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s trend test. The methodology is presented with a case of use, incorporating real results from selected techniques of a recent special issue. The possible applications of the method are highlighted, particularly in those cases in which the final results do not enable a clear evaluation of the differences among several evolutionary techniques.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2014.06.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Convergence ; Convergence-based algorithmic comparison ; Design engineering ; Evolutionary ; Evolutionary algorithms ; Methodology ; Nonparametric tests ; Optimization ; Page’s trend test ; Staples</subject><ispartof>Information sciences, 2014-12, Vol.289, p.41-58</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-916cc7fdad3bd896803439355447bd0f0ac3fb2d09ed517821403f56066b3d983</citedby><cites>FETCH-LOGICAL-c396t-916cc7fdad3bd896803439355447bd0f0ac3fb2d09ed517821403f56066b3d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2014.06.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><creatorcontrib>Hui, Sheldon</creatorcontrib><creatorcontrib>Suganthan, Ponnuthurai Nagaratnam</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><title>Analyzing convergence performance of evolutionary algorithms: A statistical approach</title><title>Information sciences</title><description>•Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of the tests.
The analysis of the performance of different approaches is a staple concern in the design of Computational Intelligence experiments. Any proper analysis of evolutionary optimization algorithms should incorporate a full set of benchmark problems and state-of-the-art comparison algorithms. For the sake of rigor, such an analysis may be completed with the use of statistical procedures, supporting the conclusions drawn.
In this paper, we point out that these conclusions are usually limited to the final results, whereas intermediate results are seldom considered. We propose a new methodology for comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s trend test. The methodology is presented with a case of use, incorporating real results from selected techniques of a recent special issue. The possible applications of the method are highlighted, particularly in those cases in which the final results do not enable a clear evaluation of the differences among several evolutionary techniques.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Convergence-based algorithmic comparison</subject><subject>Design engineering</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Methodology</subject><subject>Nonparametric tests</subject><subject>Optimization</subject><subject>Page’s trend test</subject><subject>Staples</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gysiSc44_EMFUVX1IlljJbju20rpK42G6l8utJVGamu-F97vQ-CN1jKDBg_rgr3BCLEjAtgBcA4gLNcF2VOS8FvkQzgBJyKBm7Rjcx7gCAVpzP0HoxqO7044ZNpv1wtGFjB22zvQ2tD72adt9m9ui7Q3J-UOGUqW7jg0vbPj5liywmlVxMTqsuU_t98Epvb9FVq7po7_7mHH29vqyX7_nq8-1juVjlmgiecoG51lVrlCGNqQWvgVAiCGOUVo2BFpQmbVMaENYwXNUlpkBaxoHzhhhRkzl6ON8d334fbEyyd1HbrlOD9YcoMWeYMkIFG6P4HNXBxxhsK_fB9WMdiUFOBuVOjgblZFACl6PBkXk-M3bscHQ2yKjdpMe4YHWSxrt_6F_rZXoI</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Derrac, Joaquín</creator><creator>García, Salvador</creator><creator>Hui, Sheldon</creator><creator>Suganthan, Ponnuthurai Nagaratnam</creator><creator>Herrera, Francisco</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>Analyzing convergence performance of evolutionary algorithms: A statistical approach</title><author>Derrac, Joaquín ; García, Salvador ; Hui, Sheldon ; Suganthan, Ponnuthurai Nagaratnam ; Herrera, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-916cc7fdad3bd896803439355447bd0f0ac3fb2d09ed517821403f56066b3d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Convergence-based algorithmic comparison</topic><topic>Design engineering</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Methodology</topic><topic>Nonparametric tests</topic><topic>Optimization</topic><topic>Page’s trend test</topic><topic>Staples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derrac, Joaquín</creatorcontrib><creatorcontrib>García, Salvador</creatorcontrib><creatorcontrib>Hui, Sheldon</creatorcontrib><creatorcontrib>Suganthan, Ponnuthurai Nagaratnam</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derrac, Joaquín</au><au>García, Salvador</au><au>Hui, Sheldon</au><au>Suganthan, Ponnuthurai Nagaratnam</au><au>Herrera, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing convergence performance of evolutionary algorithms: A statistical approach</atitle><jtitle>Information sciences</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>289</volume><spage>41</spage><epage>58</epage><pages>41-58</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>•Convergence analysis is presented for analyzing evolutionary algorithms’ performance.•Convergence testing is performed by using the nonparametric Page test.•An alternative is provided for experiments including functions with reachable optima.•A case of study is included, demonstrating the uses of the tests.
The analysis of the performance of different approaches is a staple concern in the design of Computational Intelligence experiments. Any proper analysis of evolutionary optimization algorithms should incorporate a full set of benchmark problems and state-of-the-art comparison algorithms. For the sake of rigor, such an analysis may be completed with the use of statistical procedures, supporting the conclusions drawn.
In this paper, we point out that these conclusions are usually limited to the final results, whereas intermediate results are seldom considered. We propose a new methodology for comparing evolutionary algorithms’ convergence capabilities, based on the use of Page’s trend test. The methodology is presented with a case of use, incorporating real results from selected techniques of a recent special issue. The possible applications of the method are highlighted, particularly in those cases in which the final results do not enable a clear evaluation of the differences among several evolutionary techniques.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2014.06.009</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2014-12, Vol.289, p.41-58 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651453495 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Convergence Convergence-based algorithmic comparison Design engineering Evolutionary Evolutionary algorithms Methodology Nonparametric tests Optimization Page’s trend test Staples |
title | Analyzing convergence performance of evolutionary algorithms: A statistical approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20convergence%20performance%20of%20evolutionary%20algorithms:%20A%20statistical%20approach&rft.jtitle=Information%20sciences&rft.au=Derrac,%20Joaqu%C3%ADn&rft.date=2014-12-01&rft.volume=289&rft.spage=41&rft.epage=58&rft.pages=41-58&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2014.06.009&rft_dat=%3Cproquest_cross%3E1651453495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651453495&rft_id=info:pmid/&rft_els_id=S0020025514006276&rfr_iscdi=true |