The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver

The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2014-03, Vol.26 (11), p.115405-115405
Hauptverfasser: Chakraborty, Indrani, Shirodkar, Sharmila N, Gohil, Smita, Waghmare, Umesh V, Ayyub, Pushan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115405
container_issue 11
container_start_page 115405
container_title Journal of physics. Condensed matter
container_volume 26
creator Chakraborty, Indrani
Shirodkar, Sharmila N
Gohil, Smita
Waghmare, Umesh V
Ayyub, Pushan
description The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min−1) and a latent heat of 312.9 J g−1, the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm−1 (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at −4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.
doi_str_mv 10.1088/0953-8984/26/11/115405
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651446991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651446991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e865138fb1d717257a11b0c17055ab240aab64abfc6150d2ace81caee199b14f3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOo7-BenOcVEnt03SZCmDLxDcjOAupGnqVNqmJq3ovzedFwiCEAi5-c65cA5CF4CvAXM-x4KmMReczBM2BwiHEkwP0ARSBjEj_PUQTfbQCTr1_h1jTHhKjtFJQigXjNIJapYrE7WqH5yJbBn14eV7N-gwUHXUrZQ3Ue9U66u-sm1UOtusoZX5Um-2DcyMPFztQLv-00Ne6WiWLnbzYOyr-tO4M3RUqtqb8-09RS93t8vFQ_z0fP-4uHmKNQHRx4YzCikvcygyyBKaKYAca8gwpSpPCFYqZ0TlpWZAcZEobThoZQwIkQMp0ymabXw7Zz8G43vZVF6bulatsYOXEPwJYULA_yjFhFBBshFlG1Q7670zpexc1Sj3LQHLsRU5Bi7HwGXCJIDctBKEF9sdQ96YYi_b1RCAZANUtpPvdnAhWP-_6-UfIt38omRXlOkP_OWipQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504459471</pqid></control><display><type>article</type><title>The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chakraborty, Indrani ; Shirodkar, Sharmila N ; Gohil, Smita ; Waghmare, Umesh V ; Ayyub, Pushan</creator><creatorcontrib>Chakraborty, Indrani ; Shirodkar, Sharmila N ; Gohil, Smita ; Waghmare, Umesh V ; Ayyub, Pushan</creatorcontrib><description>The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min−1) and a latent heat of 312.9 J g−1, the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm−1 (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at −4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/11/115405</identifier><identifier>PMID: 24589655</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Calorimetry ; Calorimetry, Differential Scanning ; Condensed matter ; Density ; density functional theory ; Grain growth ; Microstructure ; Models, Molecular ; Molecular Dynamics Simulation ; Phase transformations ; Phase Transition ; polytypes of silver ; Silver ; Silver - chemistry ; size-driven transition ; stacking fault energy ; structural phase transition ; Thermodynamics ; transformation kinetics ; Transformations ; Transition Temperature ; X-Ray Diffraction</subject><ispartof>Journal of physics. Condensed matter, 2014-03, Vol.26 (11), p.115405-115405</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e865138fb1d717257a11b0c17055ab240aab64abfc6150d2ace81caee199b14f3</citedby><cites>FETCH-LOGICAL-c419t-e865138fb1d717257a11b0c17055ab240aab64abfc6150d2ace81caee199b14f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/26/11/115405/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24589655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Indrani</creatorcontrib><creatorcontrib>Shirodkar, Sharmila N</creatorcontrib><creatorcontrib>Gohil, Smita</creatorcontrib><creatorcontrib>Waghmare, Umesh V</creatorcontrib><creatorcontrib>Ayyub, Pushan</creatorcontrib><title>The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min−1) and a latent heat of 312.9 J g−1, the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm−1 (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at −4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.</description><subject>Calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Condensed matter</subject><subject>Density</subject><subject>density functional theory</subject><subject>Grain growth</subject><subject>Microstructure</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Phase transformations</subject><subject>Phase Transition</subject><subject>polytypes of silver</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>size-driven transition</subject><subject>stacking fault energy</subject><subject>structural phase transition</subject><subject>Thermodynamics</subject><subject>transformation kinetics</subject><subject>Transformations</subject><subject>Transition Temperature</subject><subject>X-Ray Diffraction</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoOo7-BenOcVEnt03SZCmDLxDcjOAupGnqVNqmJq3ovzedFwiCEAi5-c65cA5CF4CvAXM-x4KmMReczBM2BwiHEkwP0ARSBjEj_PUQTfbQCTr1_h1jTHhKjtFJQigXjNIJapYrE7WqH5yJbBn14eV7N-gwUHXUrZQ3Ue9U66u-sm1UOtusoZX5Um-2DcyMPFztQLv-00Ne6WiWLnbzYOyr-tO4M3RUqtqb8-09RS93t8vFQ_z0fP-4uHmKNQHRx4YzCikvcygyyBKaKYAca8gwpSpPCFYqZ0TlpWZAcZEobThoZQwIkQMp0ymabXw7Zz8G43vZVF6bulatsYOXEPwJYULA_yjFhFBBshFlG1Q7670zpexc1Sj3LQHLsRU5Bi7HwGXCJIDctBKEF9sdQ96YYi_b1RCAZANUtpPvdnAhWP-_6-UfIt38omRXlOkP_OWipQ</recordid><startdate>20140319</startdate><enddate>20140319</enddate><creator>Chakraborty, Indrani</creator><creator>Shirodkar, Sharmila N</creator><creator>Gohil, Smita</creator><creator>Waghmare, Umesh V</creator><creator>Ayyub, Pushan</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140319</creationdate><title>The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver</title><author>Chakraborty, Indrani ; Shirodkar, Sharmila N ; Gohil, Smita ; Waghmare, Umesh V ; Ayyub, Pushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e865138fb1d717257a11b0c17055ab240aab64abfc6150d2ace81caee199b14f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Condensed matter</topic><topic>Density</topic><topic>density functional theory</topic><topic>Grain growth</topic><topic>Microstructure</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Phase transformations</topic><topic>Phase Transition</topic><topic>polytypes of silver</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>size-driven transition</topic><topic>stacking fault energy</topic><topic>structural phase transition</topic><topic>Thermodynamics</topic><topic>transformation kinetics</topic><topic>Transformations</topic><topic>Transition Temperature</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Indrani</creatorcontrib><creatorcontrib>Shirodkar, Sharmila N</creatorcontrib><creatorcontrib>Gohil, Smita</creatorcontrib><creatorcontrib>Waghmare, Umesh V</creatorcontrib><creatorcontrib>Ayyub, Pushan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Indrani</au><au>Shirodkar, Sharmila N</au><au>Gohil, Smita</au><au>Waghmare, Umesh V</au><au>Ayyub, Pushan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-03-19</date><risdate>2014</risdate><volume>26</volume><issue>11</issue><spage>115405</spage><epage>115405</epage><pages>115405-115405</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min−1) and a latent heat of 312.9 J g−1, the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm−1 (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at −4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>24589655</pmid><doi>10.1088/0953-8984/26/11/115405</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2014-03, Vol.26 (11), p.115405-115405
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_1651446991
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Calorimetry
Calorimetry, Differential Scanning
Condensed matter
Density
density functional theory
Grain growth
Microstructure
Models, Molecular
Molecular Dynamics Simulation
Phase transformations
Phase Transition
polytypes of silver
Silver
Silver - chemistry
size-driven transition
stacking fault energy
structural phase transition
Thermodynamics
transformation kinetics
Transformations
Transition Temperature
X-Ray Diffraction
title The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20nature%20of%20the%20structural%20phase%20transition%20from%20the%20hexagonal%20(4H)%20phase%20to%20the%20cubic%20(3C)%20phase%20of%20silver&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Chakraborty,%20Indrani&rft.date=2014-03-19&rft.volume=26&rft.issue=11&rft.spage=115405&rft.epage=115405&rft.pages=115405-115405&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/11/115405&rft_dat=%3Cproquest_iop_j%3E1651446991%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504459471&rft_id=info:pmid/24589655&rfr_iscdi=true