Generalized ...-deformed correlation functions as spectral functions of hyperbolic geometry
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon f...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2014-08, Vol.74 (8), p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 74 |
creator | Bonora, L Bytsenko, A A Guimaraes, MEX |
description | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with ..., is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to ... With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry. |
doi_str_mv | 10.1140/epjc/s10052-014-2976-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651445780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651445780</sourcerecordid><originalsourceid>FETCH-LOGICAL-p118t-f4382c0b0156327b4a3141891426dc79bab2e133716019eb750f704a7b85bc523</originalsourceid><addsrcrecordid>eNpNjMFOwzAQRC0EEqXwCyhHLk537XWcHFEFBakSFzhxqGx3A6nSOMTpoXw9QSDEad48aUaIa4QckWDB_S4sEgIYJQFJqsoWUp2IGZImWUz69I-JzsVFSjsAUATlTLyuuOPBtc0nb7M8z-WW6zjspxLiMHDrxiZ2WX3owjekzKUs9RzGafLPxjp7P_Y8-Ng2IXvjuOdxOF6Ks9q1ia9-cy5e7u-elw9y_bR6XN6uZY9YjrImXaoAHtAUWllPTiNhWSGpYhts5Z1XjFpbLAAr9tZAbYGc9aXxwSg9Fzc_v_0QPw6cxs2-SYHb1nUcD2mDhUEiY0vQX8uGWIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651445780</pqid></control><display><type>article</type><title>Generalized ...-deformed correlation functions as spectral functions of hyperbolic geometry</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bonora, L ; Bytsenko, A A ; Guimaraes, MEX</creator><creatorcontrib>Bonora, L ; Bytsenko, A A ; Guimaraes, MEX</creatorcontrib><description>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with ..., is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to ... With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-014-2976-2</identifier><language>eng</language><subject>Algebra ; Amplitudes ; Lie groups ; Representations ; Spectra ; Texts ; Three dimensional ; Two dimensional</subject><ispartof>The European physical journal. C, Particles and fields, 2014-08, Vol.74 (8), p.1-8</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Bonora, L</creatorcontrib><creatorcontrib>Bytsenko, A A</creatorcontrib><creatorcontrib>Guimaraes, MEX</creatorcontrib><title>Generalized ...-deformed correlation functions as spectral functions of hyperbolic geometry</title><title>The European physical journal. C, Particles and fields</title><description>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with ..., is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to ... With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.</description><subject>Algebra</subject><subject>Amplitudes</subject><subject>Lie groups</subject><subject>Representations</subject><subject>Spectra</subject><subject>Texts</subject><subject>Three dimensional</subject><subject>Two dimensional</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNjMFOwzAQRC0EEqXwCyhHLk537XWcHFEFBakSFzhxqGx3A6nSOMTpoXw9QSDEad48aUaIa4QckWDB_S4sEgIYJQFJqsoWUp2IGZImWUz69I-JzsVFSjsAUATlTLyuuOPBtc0nb7M8z-WW6zjspxLiMHDrxiZ2WX3owjekzKUs9RzGafLPxjp7P_Y8-Ng2IXvjuOdxOF6Ks9q1ia9-cy5e7u-elw9y_bR6XN6uZY9YjrImXaoAHtAUWllPTiNhWSGpYhts5Z1XjFpbLAAr9tZAbYGc9aXxwSg9Fzc_v_0QPw6cxs2-SYHb1nUcD2mDhUEiY0vQX8uGWIk</recordid><startdate>20140809</startdate><enddate>20140809</enddate><creator>Bonora, L</creator><creator>Bytsenko, A A</creator><creator>Guimaraes, MEX</creator><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140809</creationdate><title>Generalized ...-deformed correlation functions as spectral functions of hyperbolic geometry</title><author>Bonora, L ; Bytsenko, A A ; Guimaraes, MEX</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p118t-f4382c0b0156327b4a3141891426dc79bab2e133716019eb750f704a7b85bc523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Amplitudes</topic><topic>Lie groups</topic><topic>Representations</topic><topic>Spectra</topic><topic>Texts</topic><topic>Three dimensional</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonora, L</creatorcontrib><creatorcontrib>Bytsenko, A A</creatorcontrib><creatorcontrib>Guimaraes, MEX</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonora, L</au><au>Bytsenko, A A</au><au>Guimaraes, MEX</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized ...-deformed correlation functions as spectral functions of hyperbolic geometry</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2014-08-09</date><risdate>2014</risdate><volume>74</volume><issue>8</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with ..., is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to ... With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.</abstract><doi>10.1140/epjc/s10052-014-2976-2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2014-08, Vol.74 (8), p.1-8 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651445780 |
source | DOAJ Directory of Open Access Journals; SpringerNature Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Amplitudes Lie groups Representations Spectra Texts Three dimensional Two dimensional |
title | Generalized ...-deformed correlation functions as spectral functions of hyperbolic geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20...-deformed%20correlation%20functions%20as%20spectral%20functions%20of%20hyperbolic%20geometry&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Bonora,%20L&rft.date=2014-08-09&rft.volume=74&rft.issue=8&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-014-2976-2&rft_dat=%3Cproquest%3E1651445780%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651445780&rft_id=info:pmid/&rfr_iscdi=true |