Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2014-08, Vol.225 (8), p.1-9, Article 2058
Hauptverfasser: Albergaria, José Tomás, Martins, F. G, Alvim-Ferraz, M. C. M, Delerue-Matos, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 8
container_start_page 1
container_title Water, air, and soil pollution
container_volume 225
creator Albergaria, José Tomás
Martins, F. G
Alvim-Ferraz, M. C. M
Delerue-Matos, C
description The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
doi_str_mv 10.1007/s11270-014-2058-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651444621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A384098021</galeid><sourcerecordid>A384098021</sourcerecordid><originalsourceid>FETCH-LOGICAL-a565t-b815a10ab565999d9151175e182610fb62977d18b83c6fde618341bb4b20417a3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEkvbD8AJS1y4pHgcO7aPq2oLSAtF_cPVcpLxyiUbb-1EsN8eZ8MBcYCZw8jW743e6BXFa6CXQKl8nwCYpCUFXjIqVHl8VqxAyKpkumLPixWlXJe1lvpl8SqlR5pLK7kqnj5P_egPPZKtH9BGcou7iCn5MBA7dGQdR-98621PvuAUT2P8EeL3RMZAvkbsfDuSe7_HE75xM4xDeyTBkbvge_LNHkIkm59jtO2Y154XL5ztE178nmfFw_Xm_upjub358OlqvS2tqMVYNgqEBWqb_NJadxoEgBQIitVAXVMzLWUHqlFVW7sOa1AVh6bhDaMcpK3OinfL3kMMTxOm0ex9arHv7YBhSgZqAZzzmsH_UVFTYAqqGX37F_oYpjjkQzIlWDbJuM7U5ULtbI_GDy7M1-fucO_bMKDz-X9dKZ5ToCcHsAjaGFKK6Mwh-r2NRwPUzAGbJWCTAzZzwOaYNWzRpMwOO4x_WPmH6M0icjYYu4s-mYc7lgFKodKKy-oX2WSv4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552151249</pqid></control><display><type>article</type><title>Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction</title><source>SpringerLink Journals</source><creator>Albergaria, José Tomás ; Martins, F. G ; Alvim-Ferraz, M. C. M ; Delerue-Matos, C</creator><creatorcontrib>Albergaria, José Tomás ; Martins, F. G ; Alvim-Ferraz, M. C. M ; Delerue-Matos, C</creatorcontrib><description>The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-014-2058-y</identifier><language>eng</language><publisher>Cham: Springer-Verlag</publisher><subject>Analysis ; Artificial neural networks ; Atmospheric Protection/Air Quality Control/Air Pollution ; Benzene ; Bioremediation ; Climate Change/Climate Change Impacts ; Contamination ; Decision theory ; Earth and Environmental Science ; Efficiency ; Environment ; Environmental health ; Environmental monitoring ; Ethyl benzene ; Ethylbenzene ; Experiments ; Extraction ; Heavy metals ; Hydrocarbons ; Hydrogeology ; linear models ; Mathematical models ; Neural networks ; Perchloroethylene ; polluted soils ; prediction ; Regression ; Regression analysis ; Remediation ; Soil (material) ; Soil contaminants ; Soil contamination ; Soil pollution ; Soil remediation ; Soil Science &amp; Conservation ; soil vapor extraction ; Solvents ; Studies ; Tetrachloroethylene ; Toluene ; Trichloroethylene ; Vapors ; viability ; VOCs ; Volatile organic compounds ; Water Quality/Water Pollution ; Xylene</subject><ispartof>Water, air, and soil pollution, 2014-08, Vol.225 (8), p.1-9, Article 2058</ispartof><rights>Springer International Publishing Switzerland 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a565t-b815a10ab565999d9151175e182610fb62977d18b83c6fde618341bb4b20417a3</citedby><cites>FETCH-LOGICAL-a565t-b815a10ab565999d9151175e182610fb62977d18b83c6fde618341bb4b20417a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-014-2058-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-014-2058-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Albergaria, José Tomás</creatorcontrib><creatorcontrib>Martins, F. G</creatorcontrib><creatorcontrib>Alvim-Ferraz, M. C. M</creatorcontrib><creatorcontrib>Delerue-Matos, C</creatorcontrib><title>Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.</description><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Benzene</subject><subject>Bioremediation</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Contamination</subject><subject>Decision theory</subject><subject>Earth and Environmental Science</subject><subject>Efficiency</subject><subject>Environment</subject><subject>Environmental health</subject><subject>Environmental monitoring</subject><subject>Ethyl benzene</subject><subject>Ethylbenzene</subject><subject>Experiments</subject><subject>Extraction</subject><subject>Heavy metals</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>linear models</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Perchloroethylene</subject><subject>polluted soils</subject><subject>prediction</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Remediation</subject><subject>Soil (material)</subject><subject>Soil contaminants</subject><subject>Soil contamination</subject><subject>Soil pollution</subject><subject>Soil remediation</subject><subject>Soil Science &amp; Conservation</subject><subject>soil vapor extraction</subject><subject>Solvents</subject><subject>Studies</subject><subject>Tetrachloroethylene</subject><subject>Toluene</subject><subject>Trichloroethylene</subject><subject>Vapors</subject><subject>viability</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Water Quality/Water Pollution</subject><subject>Xylene</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU9v1DAQxSMEEkvbD8AJS1y4pHgcO7aPq2oLSAtF_cPVcpLxyiUbb-1EsN8eZ8MBcYCZw8jW743e6BXFa6CXQKl8nwCYpCUFXjIqVHl8VqxAyKpkumLPixWlXJe1lvpl8SqlR5pLK7kqnj5P_egPPZKtH9BGcou7iCn5MBA7dGQdR-98621PvuAUT2P8EeL3RMZAvkbsfDuSe7_HE75xM4xDeyTBkbvge_LNHkIkm59jtO2Y154XL5ztE178nmfFw_Xm_upjub358OlqvS2tqMVYNgqEBWqb_NJadxoEgBQIitVAXVMzLWUHqlFVW7sOa1AVh6bhDaMcpK3OinfL3kMMTxOm0ex9arHv7YBhSgZqAZzzmsH_UVFTYAqqGX37F_oYpjjkQzIlWDbJuM7U5ULtbI_GDy7M1-fucO_bMKDz-X9dKZ5ToCcHsAjaGFKK6Mwh-r2NRwPUzAGbJWCTAzZzwOaYNWzRpMwOO4x_WPmH6M0icjYYu4s-mYc7lgFKodKKy-oX2WSv4w</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Albergaria, José Tomás</creator><creator>Martins, F. G</creator><creator>Alvim-Ferraz, M. C. M</creator><creator>Delerue-Matos, C</creator><general>Springer-Verlag</general><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QO</scope><scope>7ST</scope><scope>SOI</scope><scope>7SC</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction</title><author>Albergaria, José Tomás ; Martins, F. G ; Alvim-Ferraz, M. C. M ; Delerue-Matos, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a565t-b815a10ab565999d9151175e182610fb62977d18b83c6fde618341bb4b20417a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Benzene</topic><topic>Bioremediation</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Contamination</topic><topic>Decision theory</topic><topic>Earth and Environmental Science</topic><topic>Efficiency</topic><topic>Environment</topic><topic>Environmental health</topic><topic>Environmental monitoring</topic><topic>Ethyl benzene</topic><topic>Ethylbenzene</topic><topic>Experiments</topic><topic>Extraction</topic><topic>Heavy metals</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>linear models</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Perchloroethylene</topic><topic>polluted soils</topic><topic>prediction</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Remediation</topic><topic>Soil (material)</topic><topic>Soil contaminants</topic><topic>Soil contamination</topic><topic>Soil pollution</topic><topic>Soil remediation</topic><topic>Soil Science &amp; Conservation</topic><topic>soil vapor extraction</topic><topic>Solvents</topic><topic>Studies</topic><topic>Tetrachloroethylene</topic><topic>Toluene</topic><topic>Trichloroethylene</topic><topic>Vapors</topic><topic>viability</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Water Quality/Water Pollution</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albergaria, José Tomás</creatorcontrib><creatorcontrib>Martins, F. G</creatorcontrib><creatorcontrib>Alvim-Ferraz, M. C. M</creatorcontrib><creatorcontrib>Delerue-Matos, C</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albergaria, José Tomás</au><au>Martins, F. G</au><au>Alvim-Ferraz, M. C. M</au><au>Delerue-Matos, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>225</volume><issue>8</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>2058</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.</abstract><cop>Cham</cop><pub>Springer-Verlag</pub><doi>10.1007/s11270-014-2058-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2014-08, Vol.225 (8), p.1-9, Article 2058
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_miscellaneous_1651444621
source SpringerLink Journals
subjects Analysis
Artificial neural networks
Atmospheric Protection/Air Quality Control/Air Pollution
Benzene
Bioremediation
Climate Change/Climate Change Impacts
Contamination
Decision theory
Earth and Environmental Science
Efficiency
Environment
Environmental health
Environmental monitoring
Ethyl benzene
Ethylbenzene
Experiments
Extraction
Heavy metals
Hydrocarbons
Hydrogeology
linear models
Mathematical models
Neural networks
Perchloroethylene
polluted soils
prediction
Regression
Regression analysis
Remediation
Soil (material)
Soil contaminants
Soil contamination
Soil pollution
Soil remediation
Soil Science & Conservation
soil vapor extraction
Solvents
Studies
Tetrachloroethylene
Toluene
Trichloroethylene
Vapors
viability
VOCs
Volatile organic compounds
Water Quality/Water Pollution
Xylene
title Multiple Linear Regression and Artificial Neural Networks to Predict Time and Efficiency of Soil Vapor Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Linear%20Regression%20and%20Artificial%20Neural%20Networks%20to%20Predict%20Time%20and%20Efficiency%20of%20Soil%20Vapor%20Extraction&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Albergaria,%20Jos%C3%A9%20Tom%C3%A1s&rft.date=2014-08-01&rft.volume=225&rft.issue=8&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=2058&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-014-2058-y&rft_dat=%3Cgale_proqu%3EA384098021%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552151249&rft_id=info:pmid/&rft_galeid=A384098021&rfr_iscdi=true