Identification of suitable fundus images using automated quality assessment methods
Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical optics 2014-04, Vol.19 (4), p.046006-046006 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 046006 |
---|---|
container_issue | 4 |
container_start_page | 046006 |
container_title | Journal of biomedical optics |
container_volume | 19 |
creator | Şevik, Uğur Köse, Cemal Berber, Tolga Erdöl, Hidayet |
description | Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an approach for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 consecutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accuracy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic retinal analysis system with sufficient performance scores. |
doi_str_mv | 10.1117/1.JBO.19.4.046006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651443328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651443328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-abd4915ad08f588760bbbffb7fa693c1950ed6ba2c0bb0ff121f965d806ae73c3</originalsourceid><addsrcrecordid>eNqFkE1PFzEQhxsiEUQ_ABfTo5ddOrttt3tEEIWQQIJ6bbrbFkv2jZ32gJ-ewh81AY2X6aTzmyeTh5B9YCUANAdQnn28KKEtecm4ZExukV0QkhVVpeBV7pmqi1pKtUPeIN4wxpRs5WuyU_EGVK34Lrk6tW6KwYfexDBPdPYUU4imGxz1abIJaRjNtUOaMEzX1KQ4jyY6S2-TGUK8owbRIY6ZQkcXf8wW35JtbwZ0757ePfLt5NPXoy_F-cXn06PD86LnrYiF6SxvQRjLlBdKNZJ1Xed913gj27qHVjBnZWeqPg-Y91CBb6Wwiknjmrqv98iHDXdZ59vkMOoxYO-GwUxuTqhBCuC8riv1_6jI3jiXlchR2ET7dUZcndfLmhWsdxqYftCuQWftGlrN9UZ73nn_hE_d6OzvjV-ec-D7JoBLcPpmTuuUzfzh_AxLrs-wj7-Hawz94C6PT16MF-szuPwb-N-n3gOSQKl7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515644625</pqid></control><display><type>article</type><title>Identification of suitable fundus images using automated quality assessment methods</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Şevik, Uğur ; Köse, Cemal ; Berber, Tolga ; Erdöl, Hidayet</creator><creatorcontrib>Şevik, Uğur ; Köse, Cemal ; Berber, Tolga ; Erdöl, Hidayet</creatorcontrib><description>Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an approach for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 consecutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accuracy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic retinal analysis system with sufficient performance scores.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.19.4.046006</identifier><identifier>PMID: 24718384</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Artificial Intelligence ; Automated ; Automation ; Databases, Factual ; Diabetic Retinopathy - pathology ; Diagnosis ; Fundus Oculi ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Image quality ; Models, Statistical ; Quality assessment ; Retina - pathology ; Retinal images ; Retinal Vessels - pathology</subject><ispartof>Journal of biomedical optics, 2014-04, Vol.19 (4), p.046006-046006</ispartof><rights>2014 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-abd4915ad08f588760bbbffb7fa693c1950ed6ba2c0bb0ff121f965d806ae73c3</citedby><cites>FETCH-LOGICAL-c495t-abd4915ad08f588760bbbffb7fa693c1950ed6ba2c0bb0ff121f965d806ae73c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24718384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Şevik, Uğur</creatorcontrib><creatorcontrib>Köse, Cemal</creatorcontrib><creatorcontrib>Berber, Tolga</creatorcontrib><creatorcontrib>Erdöl, Hidayet</creatorcontrib><title>Identification of suitable fundus images using automated quality assessment methods</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an approach for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 consecutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accuracy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic retinal analysis system with sufficient performance scores.</description><subject>Artificial Intelligence</subject><subject>Automated</subject><subject>Automation</subject><subject>Databases, Factual</subject><subject>Diabetic Retinopathy - pathology</subject><subject>Diagnosis</subject><subject>Fundus Oculi</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Models, Statistical</subject><subject>Quality assessment</subject><subject>Retina - pathology</subject><subject>Retinal images</subject><subject>Retinal Vessels - pathology</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PFzEQhxsiEUQ_ABfTo5ddOrttt3tEEIWQQIJ6bbrbFkv2jZ32gJ-ewh81AY2X6aTzmyeTh5B9YCUANAdQnn28KKEtecm4ZExukV0QkhVVpeBV7pmqi1pKtUPeIN4wxpRs5WuyU_EGVK34Lrk6tW6KwYfexDBPdPYUU4imGxz1abIJaRjNtUOaMEzX1KQ4jyY6S2-TGUK8owbRIY6ZQkcXf8wW35JtbwZ0757ePfLt5NPXoy_F-cXn06PD86LnrYiF6SxvQRjLlBdKNZJ1Xed913gj27qHVjBnZWeqPg-Y91CBb6Wwiknjmrqv98iHDXdZ59vkMOoxYO-GwUxuTqhBCuC8riv1_6jI3jiXlchR2ET7dUZcndfLmhWsdxqYftCuQWftGlrN9UZ73nn_hE_d6OzvjV-ec-D7JoBLcPpmTuuUzfzh_AxLrs-wj7-Hawz94C6PT16MF-szuPwb-N-n3gOSQKl7</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Şevik, Uğur</creator><creator>Köse, Cemal</creator><creator>Berber, Tolga</creator><creator>Erdöl, Hidayet</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Identification of suitable fundus images using automated quality assessment methods</title><author>Şevik, Uğur ; Köse, Cemal ; Berber, Tolga ; Erdöl, Hidayet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-abd4915ad08f588760bbbffb7fa693c1950ed6ba2c0bb0ff121f965d806ae73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Intelligence</topic><topic>Automated</topic><topic>Automation</topic><topic>Databases, Factual</topic><topic>Diabetic Retinopathy - pathology</topic><topic>Diagnosis</topic><topic>Fundus Oculi</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Models, Statistical</topic><topic>Quality assessment</topic><topic>Retina - pathology</topic><topic>Retinal images</topic><topic>Retinal Vessels - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Şevik, Uğur</creatorcontrib><creatorcontrib>Köse, Cemal</creatorcontrib><creatorcontrib>Berber, Tolga</creatorcontrib><creatorcontrib>Erdöl, Hidayet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Şevik, Uğur</au><au>Köse, Cemal</au><au>Berber, Tolga</au><au>Erdöl, Hidayet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of suitable fundus images using automated quality assessment methods</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>19</volume><issue>4</issue><spage>046006</spage><epage>046006</epage><pages>046006-046006</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an approach for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 consecutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accuracy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic retinal analysis system with sufficient performance scores.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>24718384</pmid><doi>10.1117/1.JBO.19.4.046006</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of biomedical optics, 2014-04, Vol.19 (4), p.046006-046006 |
issn | 1083-3668 1560-2281 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651443328 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Artificial Intelligence Automated Automation Databases, Factual Diabetic Retinopathy - pathology Diagnosis Fundus Oculi Humans Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Image quality Models, Statistical Quality assessment Retina - pathology Retinal images Retinal Vessels - pathology |
title | Identification of suitable fundus images using automated quality assessment methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T11%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20suitable%20fundus%20images%20using%20automated%20quality%20assessment%20methods&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=%C5%9Eevik,%20U%C4%9Fur&rft.date=2014-04-01&rft.volume=19&rft.issue=4&rft.spage=046006&rft.epage=046006&rft.pages=046006-046006&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.19.4.046006&rft_dat=%3Cproquest_pubme%3E1651443328%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1515644625&rft_id=info:pmid/24718384&rfr_iscdi=true |