The frequency of planetary debris around young white dwarfs

Context. Heavy metals in the atmospheres of white dwarfs are thought in many cases to be accreted from a circumstellar debris disk, which was formed by the tidal disruption of a rocky planetary body within the Roche radius of the star. The abundance analysis of photospheric elements and conclusions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2014-06, Vol.566, p.np-np
Hauptverfasser: Koester, D., Gänsicke, B. T., Farihi, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. Heavy metals in the atmospheres of white dwarfs are thought in many cases to be accreted from a circumstellar debris disk, which was formed by the tidal disruption of a rocky planetary body within the Roche radius of the star. The abundance analysis of photospheric elements and conclusions about the chemical composition of the accreted matter are a new and promising method of studying the composition of extrasolar planetary systems. However, ground-based searches for metal-polluted white dwarfs that rely primarily on the detection of the Ca ii K line become insensitive at Teff > 15 000 K because this ionization state depopulates. Aims. We present the results of the first unbiased survey for metal pollution among hydrogen-atmosphere (DA type) white dwarfs with cooling ages in the range 20–200 Myr and 17 000 K 23 000 K, in excellent agreement with the absence of infrared excess from dust around these warmer stars. The median, main sequence progenitor of our sample corresponds to an A-type star of ≈2 M⊙, and we find 13 of 23 white dwarfs descending from main sequence 2–3 M⊙, late B- and A-type stars to be currently accreting. Only one of 14 targets with Mwd > 0.8 M⊙ is found to be currently accreting, which suggests a large fraction of these stars result from double-degenerate mergers, and the merger disks do not commonly reform large planetes
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201423691