Prediction of compressive strength of oil field class G cement slurry using factorial design
Proper slurry design is critical to the success of a cementing job. The best method to obtain a good slurry design with desired compressive strength is by laboratory experiments which involve experimenting different formulations and selecting the best composition for the specific cementing operation...
Gespeichert in:
Veröffentlicht in: | Journal of petroleum exploration and production technology 2013-12, Vol.3 (4), p.297-302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | 4 |
container_start_page | 297 |
container_title | Journal of petroleum exploration and production technology |
container_volume | 3 |
creator | Falode, O. A. Salam, K. K. Arinkoola, A. O. Ajagbe, B. M. |
description | Proper slurry design is critical to the success of a cementing job. The best method to obtain a good slurry design with desired compressive strength is by laboratory experiments which involve experimenting different formulations and selecting the best composition for the specific cementing operation. This exercise is not only time consuming considering the amount of time required, but also expensive. Sixteen sets of experiments were conducted in the laboratory, and factorial design was used to design the experiments for the sensitivity analysis of four different factors impacting on the compressive strength of cement slurry. The responses from the 16 experimental runs were used to develop a model which can be used for optimization purposes. The model developed was simple, in agreement with the experimental data used and can be implemented using an ordinary simple calculator. |
doi_str_mv | 10.1007/s13202-013-0071-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651442719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3586066901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-1aeaf33b13366fe8832f9486029c6731e7e5ab2d8e5ee79df01d89d8aa4121823</originalsourceid><addsrcrecordid>eNqNkU9LxDAQxYsouKz7AbwFvHipZpK0TY-y6Cos6EFvQsimkxrpNmvSCvvtba2ICIKn-cPvvWF4SXIK9AIoLS4jcEZZSoGnwwgpPUhmDEqa0izPD7_7TB4nixjdhgomaFEyPkueHwJWznTOt8RbYvx2F3Bg3pHELmBbdy_j3ruGWIdNRUyjYyQrYnCLbUdi04ewJ310bU2sNp0PTjekwujq9iQ5srqJuPiq8-Tp5vpxeZuu71d3y6t1agTLuhQ0asv5BjjPc4tScmZLIXPKSpMXHLDATG9YJTFDLMrKUqhkWUmtBTCQjM-T88l3F_xbj7FTWxcNNo1u0fdRQZ6BEKyA8h8oz6gQQvIBPfuFvvo-tMMjoyErC8k_b8NEmeBjDGjVLritDnsFVI3pqCkdNaSjxnQUHTRs0sSBbWsMP5z_FH0AwVSQ4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652978382</pqid></control><display><type>article</type><title>Prediction of compressive strength of oil field class G cement slurry using factorial design</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>SpringerLink Journals - AutoHoldings</source><creator>Falode, O. A. ; Salam, K. K. ; Arinkoola, A. O. ; Ajagbe, B. M.</creator><creatorcontrib>Falode, O. A. ; Salam, K. K. ; Arinkoola, A. O. ; Ajagbe, B. M.</creatorcontrib><description>Proper slurry design is critical to the success of a cementing job. The best method to obtain a good slurry design with desired compressive strength is by laboratory experiments which involve experimenting different formulations and selecting the best composition for the specific cementing operation. This exercise is not only time consuming considering the amount of time required, but also expensive. Sixteen sets of experiments were conducted in the laboratory, and factorial design was used to design the experiments for the sensitivity analysis of four different factors impacting on the compressive strength of cement slurry. The responses from the 16 experimental runs were used to develop a model which can be used for optimization purposes. The model developed was simple, in agreement with the experimental data used and can be implemented using an ordinary simple calculator.</description><identifier>ISSN: 2190-0558</identifier><identifier>EISSN: 2190-0566</identifier><identifier>DOI: 10.1007/s13202-013-0071-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Cement ; Cementing ; Cements ; Compressive strength ; Curing ; Design engineering ; Earth and Environmental Science ; Earth Sciences ; Energy Systems ; Engineering ; Experiments ; Factorial design ; Gasoline ; Geology ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Laboratories ; Mathematical models ; Monitoring/Environmental Analysis ; Offshore Engineering ; Oil exploration ; Oil wells ; Optimization ; Original Paper - Exploration Engineering ; Petroleum engineering ; Process engineering ; Sensitivity analysis ; Slurries ; Studies ; Variables</subject><ispartof>Journal of petroleum exploration and production technology, 2013-12, Vol.3 (4), p.297-302</ispartof><rights>The Author(s) 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-1aeaf33b13366fe8832f9486029c6731e7e5ab2d8e5ee79df01d89d8aa4121823</citedby><cites>FETCH-LOGICAL-c425t-1aeaf33b13366fe8832f9486029c6731e7e5ab2d8e5ee79df01d89d8aa4121823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13202-013-0071-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s13202-013-0071-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Falode, O. A.</creatorcontrib><creatorcontrib>Salam, K. K.</creatorcontrib><creatorcontrib>Arinkoola, A. O.</creatorcontrib><creatorcontrib>Ajagbe, B. M.</creatorcontrib><title>Prediction of compressive strength of oil field class G cement slurry using factorial design</title><title>Journal of petroleum exploration and production technology</title><addtitle>J Petrol Explor Prod Technol</addtitle><description>Proper slurry design is critical to the success of a cementing job. The best method to obtain a good slurry design with desired compressive strength is by laboratory experiments which involve experimenting different formulations and selecting the best composition for the specific cementing operation. This exercise is not only time consuming considering the amount of time required, but also expensive. Sixteen sets of experiments were conducted in the laboratory, and factorial design was used to design the experiments for the sensitivity analysis of four different factors impacting on the compressive strength of cement slurry. The responses from the 16 experimental runs were used to develop a model which can be used for optimization purposes. The model developed was simple, in agreement with the experimental data used and can be implemented using an ordinary simple calculator.</description><subject>Analysis</subject><subject>Cement</subject><subject>Cementing</subject><subject>Cements</subject><subject>Compressive strength</subject><subject>Curing</subject><subject>Design engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy Systems</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Factorial design</subject><subject>Gasoline</subject><subject>Geology</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Monitoring/Environmental Analysis</subject><subject>Offshore Engineering</subject><subject>Oil exploration</subject><subject>Oil wells</subject><subject>Optimization</subject><subject>Original Paper - Exploration Engineering</subject><subject>Petroleum engineering</subject><subject>Process engineering</subject><subject>Sensitivity analysis</subject><subject>Slurries</subject><subject>Studies</subject><subject>Variables</subject><issn>2190-0558</issn><issn>2190-0566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU9LxDAQxYsouKz7AbwFvHipZpK0TY-y6Cos6EFvQsimkxrpNmvSCvvtba2ICIKn-cPvvWF4SXIK9AIoLS4jcEZZSoGnwwgpPUhmDEqa0izPD7_7TB4nixjdhgomaFEyPkueHwJWznTOt8RbYvx2F3Bg3pHELmBbdy_j3ruGWIdNRUyjYyQrYnCLbUdi04ewJ310bU2sNp0PTjekwujq9iQ5srqJuPiq8-Tp5vpxeZuu71d3y6t1agTLuhQ0asv5BjjPc4tScmZLIXPKSpMXHLDATG9YJTFDLMrKUqhkWUmtBTCQjM-T88l3F_xbj7FTWxcNNo1u0fdRQZ6BEKyA8h8oz6gQQvIBPfuFvvo-tMMjoyErC8k_b8NEmeBjDGjVLritDnsFVI3pqCkdNaSjxnQUHTRs0sSBbWsMP5z_FH0AwVSQ4g</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Falode, O. A.</creator><creator>Salam, K. K.</creator><creator>Arinkoola, A. O.</creator><creator>Ajagbe, B. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>C1K</scope><scope>JG9</scope></search><sort><creationdate>20131201</creationdate><title>Prediction of compressive strength of oil field class G cement slurry using factorial design</title><author>Falode, O. A. ; Salam, K. K. ; Arinkoola, A. O. ; Ajagbe, B. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-1aeaf33b13366fe8832f9486029c6731e7e5ab2d8e5ee79df01d89d8aa4121823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Cement</topic><topic>Cementing</topic><topic>Cements</topic><topic>Compressive strength</topic><topic>Curing</topic><topic>Design engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy Systems</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Factorial design</topic><topic>Gasoline</topic><topic>Geology</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Monitoring/Environmental Analysis</topic><topic>Offshore Engineering</topic><topic>Oil exploration</topic><topic>Oil wells</topic><topic>Optimization</topic><topic>Original Paper - Exploration Engineering</topic><topic>Petroleum engineering</topic><topic>Process engineering</topic><topic>Sensitivity analysis</topic><topic>Slurries</topic><topic>Studies</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Falode, O. A.</creatorcontrib><creatorcontrib>Salam, K. K.</creatorcontrib><creatorcontrib>Arinkoola, A. O.</creatorcontrib><creatorcontrib>Ajagbe, B. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Journal of petroleum exploration and production technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falode, O. A.</au><au>Salam, K. K.</au><au>Arinkoola, A. O.</au><au>Ajagbe, B. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of compressive strength of oil field class G cement slurry using factorial design</atitle><jtitle>Journal of petroleum exploration and production technology</jtitle><stitle>J Petrol Explor Prod Technol</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>3</volume><issue>4</issue><spage>297</spage><epage>302</epage><pages>297-302</pages><issn>2190-0558</issn><eissn>2190-0566</eissn><abstract>Proper slurry design is critical to the success of a cementing job. The best method to obtain a good slurry design with desired compressive strength is by laboratory experiments which involve experimenting different formulations and selecting the best composition for the specific cementing operation. This exercise is not only time consuming considering the amount of time required, but also expensive. Sixteen sets of experiments were conducted in the laboratory, and factorial design was used to design the experiments for the sensitivity analysis of four different factors impacting on the compressive strength of cement slurry. The responses from the 16 experimental runs were used to develop a model which can be used for optimization purposes. The model developed was simple, in agreement with the experimental data used and can be implemented using an ordinary simple calculator.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13202-013-0071-0</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-0558 |
ispartof | Journal of petroleum exploration and production technology, 2013-12, Vol.3 (4), p.297-302 |
issn | 2190-0558 2190-0566 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651442719 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; SpringerLink Journals - AutoHoldings |
subjects | Analysis Cement Cementing Cements Compressive strength Curing Design engineering Earth and Environmental Science Earth Sciences Energy Systems Engineering Experiments Factorial design Gasoline Geology Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Laboratories Mathematical models Monitoring/Environmental Analysis Offshore Engineering Oil exploration Oil wells Optimization Original Paper - Exploration Engineering Petroleum engineering Process engineering Sensitivity analysis Slurries Studies Variables |
title | Prediction of compressive strength of oil field class G cement slurry using factorial design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20compressive%20strength%20of%20oil%20field%20class%20G%20cement%20slurry%20using%20factorial%20design&rft.jtitle=Journal%20of%20petroleum%20exploration%20and%20production%20technology&rft.au=Falode,%20O.%20A.&rft.date=2013-12-01&rft.volume=3&rft.issue=4&rft.spage=297&rft.epage=302&rft.pages=297-302&rft.issn=2190-0558&rft.eissn=2190-0566&rft_id=info:doi/10.1007/s13202-013-0071-0&rft_dat=%3Cproquest_cross%3E3586066901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652978382&rft_id=info:pmid/&rfr_iscdi=true |