Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson–Boltzmann method
[Display omitted] •Electro-osmotic permeability of non-Newtonian fluid varies with external electric field magnitude.•Shear-thinning fluid and shear-thickening fluid exhibit different electro-osmotic permeability dependent on porosity.•Fluids with different properties show different correlations bet...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2014-12, Vol.436 (436), p.186-193 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 436 |
container_start_page | 186 |
container_title | Journal of colloid and interface science |
container_volume | 436 |
creator | Chen, Simeng He, Xinting Bertola, Volfango Wang, Moran |
description | [Display omitted]
•Electro-osmotic permeability of non-Newtonian fluid varies with external electric field magnitude.•Shear-thinning fluid and shear-thickening fluid exhibit different electro-osmotic permeability dependent on porosity.•Fluids with different properties show different correlations between permeability and microstructure morphology.
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson–Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. |
doi_str_mv | 10.1016/j.jcis.2014.08.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651436886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979714006055</els_id><sourcerecordid>1629965990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-56dfa8352c6820560cf0c550fdcf83f0daa2a3ca87ed00417dcab5f8f7bb9e363</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1ERYfCC7BA3iCxSXrtxIktsaFV-ZGqwgLWxuPY4FFiD74JiK54B96QJ8HRDF0iVnfz3aOj8xHyhEHNgHXnu3pnA9YcWFuDrKGV98iGgRJVz6C5TzYAnFWqV_0peYi4A2BMCPWAnHLBe9kIuSGfrkZn55yqhFPCgDR5GlOsbtz3OcVgIvXjEgakIdJ9ymlBOrkhGLpgiJ_paOY5WEffp4CY4u-fvy7SON9OJsbCzV_S8IiceDOie3y8Z-Tjq6sPl2-q63ev316-vK5sy9RciW7wplTitpMcRAfWgxUC_GC9bDwMxnDTWCN7NwC0rB-s2Qovfb_dKtd0zRl5fsjd5_R1cTjrKaB142iiK6016wRrm07K_0G5Up1QCgrKD6jNCTE7r_c5TCb_0Az0KkHv9CpBrxI0SF0klKenx_xlW8a6e_m7egGeHQGD1ow-m7hm3HFSKd7zteiLA-fKcN-CyxptcNEWAblY00MK_-rxB4a7p8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629965990</pqid></control><display><type>article</type><title>Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson–Boltzmann method</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Simeng ; He, Xinting ; Bertola, Volfango ; Wang, Moran</creator><creatorcontrib>Chen, Simeng ; He, Xinting ; Bertola, Volfango ; Wang, Moran</creatorcontrib><description>[Display omitted]
•Electro-osmotic permeability of non-Newtonian fluid varies with external electric field magnitude.•Shear-thinning fluid and shear-thickening fluid exhibit different electro-osmotic permeability dependent on porosity.•Fluids with different properties show different correlations between permeability and microstructure morphology.
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson–Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2014.08.048</identifier><identifier>PMID: 25278358</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Chemistry ; Colloidal state and disperse state ; Computational fluid dynamics ; Electro-osmosis ; Electrochemical Techniques - methods ; Electrochemistry ; Exact sciences and technology ; Fluid flow ; Fluids ; General and physical chemistry ; Kinetics ; Lattice Poisson–Boltzmann method ; Mathematical models ; Media ; Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) ; Models, Theoretical ; Networks ; Non Newtonian fluids ; Non-Newtonian fluid ; Osmosis ; Permeability ; Porous materials ; Porous media ; Rheology</subject><ispartof>Journal of colloid and interface science, 2014-12, Vol.436 (436), p.186-193</ispartof><rights>2014 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-56dfa8352c6820560cf0c550fdcf83f0daa2a3ca87ed00417dcab5f8f7bb9e363</citedby><cites>FETCH-LOGICAL-c419t-56dfa8352c6820560cf0c550fdcf83f0daa2a3ca87ed00417dcab5f8f7bb9e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2014.08.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28992726$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25278358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Simeng</creatorcontrib><creatorcontrib>He, Xinting</creatorcontrib><creatorcontrib>Bertola, Volfango</creatorcontrib><creatorcontrib>Wang, Moran</creatorcontrib><title>Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson–Boltzmann method</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
•Electro-osmotic permeability of non-Newtonian fluid varies with external electric field magnitude.•Shear-thinning fluid and shear-thickening fluid exhibit different electro-osmotic permeability dependent on porosity.•Fluids with different properties show different correlations between permeability and microstructure morphology.
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson–Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computational fluid dynamics</subject><subject>Electro-osmosis</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Lattice Poisson–Boltzmann method</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</subject><subject>Models, Theoretical</subject><subject>Networks</subject><subject>Non Newtonian fluids</subject><subject>Non-Newtonian fluid</subject><subject>Osmosis</subject><subject>Permeability</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Rheology</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS1ERYfCC7BA3iCxSXrtxIktsaFV-ZGqwgLWxuPY4FFiD74JiK54B96QJ8HRDF0iVnfz3aOj8xHyhEHNgHXnu3pnA9YcWFuDrKGV98iGgRJVz6C5TzYAnFWqV_0peYi4A2BMCPWAnHLBe9kIuSGfrkZn55yqhFPCgDR5GlOsbtz3OcVgIvXjEgakIdJ9ymlBOrkhGLpgiJ_paOY5WEffp4CY4u-fvy7SON9OJsbCzV_S8IiceDOie3y8Z-Tjq6sPl2-q63ev316-vK5sy9RciW7wplTitpMcRAfWgxUC_GC9bDwMxnDTWCN7NwC0rB-s2Qovfb_dKtd0zRl5fsjd5_R1cTjrKaB142iiK6016wRrm07K_0G5Up1QCgrKD6jNCTE7r_c5TCb_0Az0KkHv9CpBrxI0SF0klKenx_xlW8a6e_m7egGeHQGD1ow-m7hm3HFSKd7zteiLA-fKcN-CyxptcNEWAblY00MK_-rxB4a7p8w</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Chen, Simeng</creator><creator>He, Xinting</creator><creator>Bertola, Volfango</creator><creator>Wang, Moran</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20141215</creationdate><title>Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson–Boltzmann method</title><author>Chen, Simeng ; He, Xinting ; Bertola, Volfango ; Wang, Moran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-56dfa8352c6820560cf0c550fdcf83f0daa2a3ca87ed00417dcab5f8f7bb9e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computational fluid dynamics</topic><topic>Electro-osmosis</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Lattice Poisson–Boltzmann method</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</topic><topic>Models, Theoretical</topic><topic>Networks</topic><topic>Non Newtonian fluids</topic><topic>Non-Newtonian fluid</topic><topic>Osmosis</topic><topic>Permeability</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Rheology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Simeng</creatorcontrib><creatorcontrib>He, Xinting</creatorcontrib><creatorcontrib>Bertola, Volfango</creatorcontrib><creatorcontrib>Wang, Moran</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Simeng</au><au>He, Xinting</au><au>Bertola, Volfango</au><au>Wang, Moran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson–Boltzmann method</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2014-12-15</date><risdate>2014</risdate><volume>436</volume><issue>436</issue><spage>186</spage><epage>193</epage><pages>186-193</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted]
•Electro-osmotic permeability of non-Newtonian fluid varies with external electric field magnitude.•Shear-thinning fluid and shear-thickening fluid exhibit different electro-osmotic permeability dependent on porosity.•Fluids with different properties show different correlations between permeability and microstructure morphology.
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson–Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>25278358</pmid><doi>10.1016/j.jcis.2014.08.048</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2014-12, Vol.436 (436), p.186-193 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651436886 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Chemistry Colloidal state and disperse state Computational fluid dynamics Electro-osmosis Electrochemical Techniques - methods Electrochemistry Exact sciences and technology Fluid flow Fluids General and physical chemistry Kinetics Lattice Poisson–Boltzmann method Mathematical models Media Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) Models, Theoretical Networks Non Newtonian fluids Non-Newtonian fluid Osmosis Permeability Porous materials Porous media Rheology |
title | Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson–Boltzmann method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-osmosis%20of%20non-Newtonian%20fluids%20in%20porous%20media%20using%20lattice%20Poisson%E2%80%93Boltzmann%20method&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Chen,%20Simeng&rft.date=2014-12-15&rft.volume=436&rft.issue=436&rft.spage=186&rft.epage=193&rft.pages=186-193&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2014.08.048&rft_dat=%3Cproquest_cross%3E1629965990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629965990&rft_id=info:pmid/25278358&rft_els_id=S0021979714006055&rfr_iscdi=true |