Planetesimal fragmentation and giant planet formation

Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2014-05, Vol.565, p.np-np
Hauptverfasser: Guilera, O. M., de Elía, G. C., Brunini, A., Santamaría, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue
container_start_page np
container_title Astronomy and astrophysics (Berlin)
container_volume 565
creator Guilera, O. M.
de Elía, G. C.
Brunini, A.
Santamaría, P. J.
description Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions. Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modifies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses. Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and fragmentation. Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M⊙, embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in the larger fragments. Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.
doi_str_mv 10.1051/0004-6361/201322061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651435511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651435511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-81f58b7cc61d6d4c3c29693448dc977f3ea87de64d87b613a8fd2a2bce5784893</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKt_gZc9elmbyeTzKEWrUtCDIngJaTZbVvejJlvQ_97dVnr2NAzze495j5BLoNdABcwopTyXKGHGKCBjVMIRmQBHllPF5TGZHIhTcpbSx7Ay0Dgh4rl2behDqhpXZ2V06ya0veurrs1cW2TryrV9ttlBWdnFZnc6Jyelq1O4-JtT8np3-zK_z5dPi4f5zTL3aHSfayiFXinvJRSy4B49M9Ig57rwRqkSg9OqCJIXWq0koNNlwRxb-SCU5trglFztfTex-9qG1NumSj7U4zvdNlmQYggpBMA_UDRGG8lGV9yjPnYpxVDaTRzixx8L1I592rEtO7ZlD30OqnyvqlIfvg8SFz-tVKiE1fTNvvNHBJTULvAXEel1nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639989629</pqid></control><display><type>article</type><title>Planetesimal fragmentation and giant planet formation</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Guilera, O. M. ; de Elía, G. C. ; Brunini, A. ; Santamaría, P. J.</creator><creatorcontrib>Guilera, O. M. ; de Elía, G. C. ; Brunini, A. ; Santamaría, P. J.</creatorcontrib><description>Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions. Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modifies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses. Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and fragmentation. Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M⊙, embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in the larger fragments. Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201322061</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Collisions ; Core loss ; Density ; Disks ; Embryos ; Formations ; Fragmentation ; methods: numerical ; Planet formation ; planets and satellites: formation</subject><ispartof>Astronomy and astrophysics (Berlin), 2014-05, Vol.565, p.np-np</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-81f58b7cc61d6d4c3c29693448dc977f3ea87de64d87b613a8fd2a2bce5784893</citedby><cites>FETCH-LOGICAL-c398t-81f58b7cc61d6d4c3c29693448dc977f3ea87de64d87b613a8fd2a2bce5784893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids></links><search><creatorcontrib>Guilera, O. M.</creatorcontrib><creatorcontrib>de Elía, G. C.</creatorcontrib><creatorcontrib>Brunini, A.</creatorcontrib><creatorcontrib>Santamaría, P. J.</creatorcontrib><title>Planetesimal fragmentation and giant planet formation</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions. Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modifies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses. Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and fragmentation. Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M⊙, embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in the larger fragments. Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.</description><subject>Collisions</subject><subject>Core loss</subject><subject>Density</subject><subject>Disks</subject><subject>Embryos</subject><subject>Formations</subject><subject>Fragmentation</subject><subject>methods: numerical</subject><subject>Planet formation</subject><subject>planets and satellites: formation</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKt_gZc9elmbyeTzKEWrUtCDIngJaTZbVvejJlvQ_97dVnr2NAzze495j5BLoNdABcwopTyXKGHGKCBjVMIRmQBHllPF5TGZHIhTcpbSx7Ay0Dgh4rl2behDqhpXZ2V06ya0veurrs1cW2TryrV9ttlBWdnFZnc6Jyelq1O4-JtT8np3-zK_z5dPi4f5zTL3aHSfayiFXinvJRSy4B49M9Ig57rwRqkSg9OqCJIXWq0koNNlwRxb-SCU5trglFztfTex-9qG1NumSj7U4zvdNlmQYggpBMA_UDRGG8lGV9yjPnYpxVDaTRzixx8L1I592rEtO7ZlD30OqnyvqlIfvg8SFz-tVKiE1fTNvvNHBJTULvAXEel1nA</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Guilera, O. M.</creator><creator>de Elía, G. C.</creator><creator>Brunini, A.</creator><creator>Santamaría, P. J.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Planetesimal fragmentation and giant planet formation</title><author>Guilera, O. M. ; de Elía, G. C. ; Brunini, A. ; Santamaría, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-81f58b7cc61d6d4c3c29693448dc977f3ea87de64d87b613a8fd2a2bce5784893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Collisions</topic><topic>Core loss</topic><topic>Density</topic><topic>Disks</topic><topic>Embryos</topic><topic>Formations</topic><topic>Fragmentation</topic><topic>methods: numerical</topic><topic>Planet formation</topic><topic>planets and satellites: formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guilera, O. M.</creatorcontrib><creatorcontrib>de Elía, G. C.</creatorcontrib><creatorcontrib>Brunini, A.</creatorcontrib><creatorcontrib>Santamaría, P. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guilera, O. M.</au><au>de Elía, G. C.</au><au>Brunini, A.</au><au>Santamaría, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planetesimal fragmentation and giant planet formation</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>565</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions. Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modifies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses. Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and fragmentation. Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M⊙, embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in the larger fragments. Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201322061</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2014-05, Vol.565, p.np-np
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_1651435511
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Collisions
Core loss
Density
Disks
Embryos
Formations
Fragmentation
methods: numerical
Planet formation
planets and satellites: formation
title Planetesimal fragmentation and giant planet formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planetesimal%20fragmentation%20and%20giant%20planet%20formation&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Guilera,%20O.%20M.&rft.date=2014-05-01&rft.volume=565&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201322061&rft_dat=%3Cproquest_cross%3E1651435511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639989629&rft_id=info:pmid/&rfr_iscdi=true