Tweet sentiment analysis with classifier ensembles
Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Twe...
Gespeichert in:
Veröffentlicht in: | Decision Support Systems 2014-10, Vol.66, p.170-179 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | |
container_start_page | 170 |
container_title | Decision Support Systems |
container_volume | 66 |
creator | da Silva, Nádia F.F. Hruschka, Eduardo R. Hruschka, Estevam R. |
description | Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Tweets are classified as either positive or negative concerning a query term. This approach is useful for consumers who can use sentiment analysis to search for products, for companies that aim at monitoring the public sentiment of their brands, and for many other applications. Indeed, sentiment classification in microblogging services (e.g., Twitter) through classifier ensembles and lexicons has not been well explored in the literature. Our experiments on a variety of public tweet sentiment datasets show that classifier ensembles formed by Multinomial Naive Bayes, SVM, Random Forest, and Logistic Regression can improve classification accuracy.
•We show that classifier ensembles are promising for tweet sentiment analysis.•We compare bag-of-words and feature hashing for the representation of tweets.•Classifier ensembles obtained from bag-of-words and feature hashing are discussed. |
doi_str_mv | 10.1016/j.dss.2014.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651434577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923614001997</els_id><sourcerecordid>3463392851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-304c9fa2c72c3da253e5ee8384db8548922a6db0a66eb8f1da64d4cad893a8f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuCCF52zdcmWTyJ-AUFL72HNJnFlO1uzWwt_femtHjw4GXm8rzvMA8h14xWjDJ1v6wCYsUpkxXVFaXihEyY0aKsdaNPySQzumy4UOfkAnFJqRLaqAnh8y3AWCD0Y1zlUbjedTuMWGzj-Fn4ziHGNkIqoEdYLTrAS3LWug7h6rinZP7yPH96K2cfr-9Pj7PSy9qMpaDSN63jXnMvguO1gBrACCPDwtTSNJw7FRbUKQUL07LglAzSu2Aa4UwrpuTuULtOw9cGcLSriB66zvUwbNAyVTMpZK11Rm_-oMthk_Ije4oJSqXmJlPsQPk0ICZo7TrFlUs7y6jdS7RLmyXavURLtc0Sc-b22OzQu65NrvcRf4PcGCWV2Xc_HDjIQr6zLos-Qu8hxAR-tGGI_1z5AfQbhls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613004728</pqid></control><display><type>article</type><title>Tweet sentiment analysis with classifier ensembles</title><source>Elsevier ScienceDirect Journals</source><creator>da Silva, Nádia F.F. ; Hruschka, Eduardo R. ; Hruschka, Estevam R.</creator><creatorcontrib>da Silva, Nádia F.F. ; Hruschka, Eduardo R. ; Hruschka, Estevam R.</creatorcontrib><description>Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Tweets are classified as either positive or negative concerning a query term. This approach is useful for consumers who can use sentiment analysis to search for products, for companies that aim at monitoring the public sentiment of their brands, and for many other applications. Indeed, sentiment classification in microblogging services (e.g., Twitter) through classifier ensembles and lexicons has not been well explored in the literature. Our experiments on a variety of public tweet sentiment datasets show that classifier ensembles formed by Multinomial Naive Bayes, SVM, Random Forest, and Logistic Regression can improve classification accuracy.
•We show that classifier ensembles are promising for tweet sentiment analysis.•We compare bag-of-words and feature hashing for the representation of tweets.•Classifier ensembles obtained from bag-of-words and feature hashing are discussed.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/j.dss.2014.07.003</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Bayesian analysis ; Classification ; Classifier ensembles ; Classifiers ; Computer science; control theory; systems ; Data mining ; Data processing. List processing. Character string processing ; Decision support systems ; Exact sciences and technology ; Forests ; Logistics ; Memory organisation. Data processing ; Monitoring ; Regression ; Regression analysis ; Sentiment analysis ; Social networks ; Software ; Studies ; Text messaging ; Twitter ; User behavior</subject><ispartof>Decision Support Systems, 2014-10, Vol.66, p.170-179</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-304c9fa2c72c3da253e5ee8384db8548922a6db0a66eb8f1da64d4cad893a8f3</citedby><cites>FETCH-LOGICAL-c458t-304c9fa2c72c3da253e5ee8384db8548922a6db0a66eb8f1da64d4cad893a8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167923614001997$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28864688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>da Silva, Nádia F.F.</creatorcontrib><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Hruschka, Estevam R.</creatorcontrib><title>Tweet sentiment analysis with classifier ensembles</title><title>Decision Support Systems</title><description>Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Tweets are classified as either positive or negative concerning a query term. This approach is useful for consumers who can use sentiment analysis to search for products, for companies that aim at monitoring the public sentiment of their brands, and for many other applications. Indeed, sentiment classification in microblogging services (e.g., Twitter) through classifier ensembles and lexicons has not been well explored in the literature. Our experiments on a variety of public tweet sentiment datasets show that classifier ensembles formed by Multinomial Naive Bayes, SVM, Random Forest, and Logistic Regression can improve classification accuracy.
•We show that classifier ensembles are promising for tweet sentiment analysis.•We compare bag-of-words and feature hashing for the representation of tweets.•Classifier ensembles obtained from bag-of-words and feature hashing are discussed.</description><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifier ensembles</subject><subject>Classifiers</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Decision support systems</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Logistics</subject><subject>Memory organisation. Data processing</subject><subject>Monitoring</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Software</subject><subject>Studies</subject><subject>Text messaging</subject><subject>Twitter</subject><subject>User behavior</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuCCF52zdcmWTyJ-AUFL72HNJnFlO1uzWwt_femtHjw4GXm8rzvMA8h14xWjDJ1v6wCYsUpkxXVFaXihEyY0aKsdaNPySQzumy4UOfkAnFJqRLaqAnh8y3AWCD0Y1zlUbjedTuMWGzj-Fn4ziHGNkIqoEdYLTrAS3LWug7h6rinZP7yPH96K2cfr-9Pj7PSy9qMpaDSN63jXnMvguO1gBrACCPDwtTSNJw7FRbUKQUL07LglAzSu2Aa4UwrpuTuULtOw9cGcLSriB66zvUwbNAyVTMpZK11Rm_-oMthk_Ije4oJSqXmJlPsQPk0ICZo7TrFlUs7y6jdS7RLmyXavURLtc0Sc-b22OzQu65NrvcRf4PcGCWV2Xc_HDjIQr6zLos-Qu8hxAR-tGGI_1z5AfQbhls</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>da Silva, Nádia F.F.</creator><creator>Hruschka, Eduardo R.</creator><creator>Hruschka, Estevam R.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Tweet sentiment analysis with classifier ensembles</title><author>da Silva, Nádia F.F. ; Hruschka, Eduardo R. ; Hruschka, Estevam R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-304c9fa2c72c3da253e5ee8384db8548922a6db0a66eb8f1da64d4cad893a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifier ensembles</topic><topic>Classifiers</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Decision support systems</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Logistics</topic><topic>Memory organisation. Data processing</topic><topic>Monitoring</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Software</topic><topic>Studies</topic><topic>Text messaging</topic><topic>Twitter</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Nádia F.F.</creatorcontrib><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Hruschka, Estevam R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Nádia F.F.</au><au>Hruschka, Eduardo R.</au><au>Hruschka, Estevam R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tweet sentiment analysis with classifier ensembles</atitle><jtitle>Decision Support Systems</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>66</volume><spage>170</spage><epage>179</epage><pages>170-179</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Tweets are classified as either positive or negative concerning a query term. This approach is useful for consumers who can use sentiment analysis to search for products, for companies that aim at monitoring the public sentiment of their brands, and for many other applications. Indeed, sentiment classification in microblogging services (e.g., Twitter) through classifier ensembles and lexicons has not been well explored in the literature. Our experiments on a variety of public tweet sentiment datasets show that classifier ensembles formed by Multinomial Naive Bayes, SVM, Random Forest, and Logistic Regression can improve classification accuracy.
•We show that classifier ensembles are promising for tweet sentiment analysis.•We compare bag-of-words and feature hashing for the representation of tweets.•Classifier ensembles obtained from bag-of-words and feature hashing are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dss.2014.07.003</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9236 |
ispartof | Decision Support Systems, 2014-10, Vol.66, p.170-179 |
issn | 0167-9236 1873-5797 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651434577 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Bayesian analysis Classification Classifier ensembles Classifiers Computer science control theory systems Data mining Data processing. List processing. Character string processing Decision support systems Exact sciences and technology Forests Logistics Memory organisation. Data processing Monitoring Regression Regression analysis Sentiment analysis Social networks Software Studies Text messaging User behavior |
title | Tweet sentiment analysis with classifier ensembles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tweet%20sentiment%20analysis%20with%20classifier%20ensembles&rft.jtitle=Decision%20Support%20Systems&rft.au=da%20Silva,%20N%C3%A1dia%20F.F.&rft.date=2014-10-01&rft.volume=66&rft.spage=170&rft.epage=179&rft.pages=170-179&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/j.dss.2014.07.003&rft_dat=%3Cproquest_cross%3E3463392851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1613004728&rft_id=info:pmid/&rft_els_id=S0167923614001997&rfr_iscdi=true |