Tweet sentiment analysis with classifier ensembles

Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Twe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision Support Systems 2014-10, Vol.66, p.170-179
Hauptverfasser: da Silva, Nádia F.F., Hruschka, Eduardo R., Hruschka, Estevam R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue
container_start_page 170
container_title Decision Support Systems
container_volume 66
creator da Silva, Nádia F.F.
Hruschka, Eduardo R.
Hruschka, Estevam R.
description Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Tweets are classified as either positive or negative concerning a query term. This approach is useful for consumers who can use sentiment analysis to search for products, for companies that aim at monitoring the public sentiment of their brands, and for many other applications. Indeed, sentiment classification in microblogging services (e.g., Twitter) through classifier ensembles and lexicons has not been well explored in the literature. Our experiments on a variety of public tweet sentiment datasets show that classifier ensembles formed by Multinomial Naive Bayes, SVM, Random Forest, and Logistic Regression can improve classification accuracy. •We show that classifier ensembles are promising for tweet sentiment analysis.•We compare bag-of-words and feature hashing for the representation of tweets.•Classifier ensembles obtained from bag-of-words and feature hashing are discussed.
doi_str_mv 10.1016/j.dss.2014.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651434577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923614001997</els_id><sourcerecordid>3463392851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-304c9fa2c72c3da253e5ee8384db8548922a6db0a66eb8f1da64d4cad893a8f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuCCF52zdcmWTyJ-AUFL72HNJnFlO1uzWwt_femtHjw4GXm8rzvMA8h14xWjDJ1v6wCYsUpkxXVFaXihEyY0aKsdaNPySQzumy4UOfkAnFJqRLaqAnh8y3AWCD0Y1zlUbjedTuMWGzj-Fn4ziHGNkIqoEdYLTrAS3LWug7h6rinZP7yPH96K2cfr-9Pj7PSy9qMpaDSN63jXnMvguO1gBrACCPDwtTSNJw7FRbUKQUL07LglAzSu2Aa4UwrpuTuULtOw9cGcLSriB66zvUwbNAyVTMpZK11Rm_-oMthk_Ije4oJSqXmJlPsQPk0ICZo7TrFlUs7y6jdS7RLmyXavURLtc0Sc-b22OzQu65NrvcRf4PcGCWV2Xc_HDjIQr6zLos-Qu8hxAR-tGGI_1z5AfQbhls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613004728</pqid></control><display><type>article</type><title>Tweet sentiment analysis with classifier ensembles</title><source>Elsevier ScienceDirect Journals</source><creator>da Silva, Nádia F.F. ; Hruschka, Eduardo R. ; Hruschka, Estevam R.</creator><creatorcontrib>da Silva, Nádia F.F. ; Hruschka, Eduardo R. ; Hruschka, Estevam R.</creatorcontrib><description>Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Tweets are classified as either positive or negative concerning a query term. This approach is useful for consumers who can use sentiment analysis to search for products, for companies that aim at monitoring the public sentiment of their brands, and for many other applications. Indeed, sentiment classification in microblogging services (e.g., Twitter) through classifier ensembles and lexicons has not been well explored in the literature. Our experiments on a variety of public tweet sentiment datasets show that classifier ensembles formed by Multinomial Naive Bayes, SVM, Random Forest, and Logistic Regression can improve classification accuracy. •We show that classifier ensembles are promising for tweet sentiment analysis.•We compare bag-of-words and feature hashing for the representation of tweets.•Classifier ensembles obtained from bag-of-words and feature hashing are discussed.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/j.dss.2014.07.003</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Bayesian analysis ; Classification ; Classifier ensembles ; Classifiers ; Computer science; control theory; systems ; Data mining ; Data processing. List processing. Character string processing ; Decision support systems ; Exact sciences and technology ; Forests ; Logistics ; Memory organisation. Data processing ; Monitoring ; Regression ; Regression analysis ; Sentiment analysis ; Social networks ; Software ; Studies ; Text messaging ; Twitter ; User behavior</subject><ispartof>Decision Support Systems, 2014-10, Vol.66, p.170-179</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-304c9fa2c72c3da253e5ee8384db8548922a6db0a66eb8f1da64d4cad893a8f3</citedby><cites>FETCH-LOGICAL-c458t-304c9fa2c72c3da253e5ee8384db8548922a6db0a66eb8f1da64d4cad893a8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167923614001997$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28864688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>da Silva, Nádia F.F.</creatorcontrib><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Hruschka, Estevam R.</creatorcontrib><title>Tweet sentiment analysis with classifier ensembles</title><title>Decision Support Systems</title><description>Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Tweets are classified as either positive or negative concerning a query term. This approach is useful for consumers who can use sentiment analysis to search for products, for companies that aim at monitoring the public sentiment of their brands, and for many other applications. Indeed, sentiment classification in microblogging services (e.g., Twitter) through classifier ensembles and lexicons has not been well explored in the literature. Our experiments on a variety of public tweet sentiment datasets show that classifier ensembles formed by Multinomial Naive Bayes, SVM, Random Forest, and Logistic Regression can improve classification accuracy. •We show that classifier ensembles are promising for tweet sentiment analysis.•We compare bag-of-words and feature hashing for the representation of tweets.•Classifier ensembles obtained from bag-of-words and feature hashing are discussed.</description><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifier ensembles</subject><subject>Classifiers</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Decision support systems</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Logistics</subject><subject>Memory organisation. Data processing</subject><subject>Monitoring</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Software</subject><subject>Studies</subject><subject>Text messaging</subject><subject>Twitter</subject><subject>User behavior</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuCCF52zdcmWTyJ-AUFL72HNJnFlO1uzWwt_femtHjw4GXm8rzvMA8h14xWjDJ1v6wCYsUpkxXVFaXihEyY0aKsdaNPySQzumy4UOfkAnFJqRLaqAnh8y3AWCD0Y1zlUbjedTuMWGzj-Fn4ziHGNkIqoEdYLTrAS3LWug7h6rinZP7yPH96K2cfr-9Pj7PSy9qMpaDSN63jXnMvguO1gBrACCPDwtTSNJw7FRbUKQUL07LglAzSu2Aa4UwrpuTuULtOw9cGcLSriB66zvUwbNAyVTMpZK11Rm_-oMthk_Ije4oJSqXmJlPsQPk0ICZo7TrFlUs7y6jdS7RLmyXavURLtc0Sc-b22OzQu65NrvcRf4PcGCWV2Xc_HDjIQr6zLos-Qu8hxAR-tGGI_1z5AfQbhls</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>da Silva, Nádia F.F.</creator><creator>Hruschka, Eduardo R.</creator><creator>Hruschka, Estevam R.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Tweet sentiment analysis with classifier ensembles</title><author>da Silva, Nádia F.F. ; Hruschka, Eduardo R. ; Hruschka, Estevam R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-304c9fa2c72c3da253e5ee8384db8548922a6db0a66eb8f1da64d4cad893a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifier ensembles</topic><topic>Classifiers</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Decision support systems</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Logistics</topic><topic>Memory organisation. Data processing</topic><topic>Monitoring</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Software</topic><topic>Studies</topic><topic>Text messaging</topic><topic>Twitter</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Nádia F.F.</creatorcontrib><creatorcontrib>Hruschka, Eduardo R.</creatorcontrib><creatorcontrib>Hruschka, Estevam R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Nádia F.F.</au><au>Hruschka, Eduardo R.</au><au>Hruschka, Estevam R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tweet sentiment analysis with classifier ensembles</atitle><jtitle>Decision Support Systems</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>66</volume><spage>170</spage><epage>179</epage><pages>170-179</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>Twitter is a microblogging site in which users can post updates (tweets) to friends (followers). It has become an immense dataset of the so-called sentiments. In this paper, we introduce an approach that automatically classifies the sentiment of tweets by using classifier ensembles and lexicons. Tweets are classified as either positive or negative concerning a query term. This approach is useful for consumers who can use sentiment analysis to search for products, for companies that aim at monitoring the public sentiment of their brands, and for many other applications. Indeed, sentiment classification in microblogging services (e.g., Twitter) through classifier ensembles and lexicons has not been well explored in the literature. Our experiments on a variety of public tweet sentiment datasets show that classifier ensembles formed by Multinomial Naive Bayes, SVM, Random Forest, and Logistic Regression can improve classification accuracy. •We show that classifier ensembles are promising for tweet sentiment analysis.•We compare bag-of-words and feature hashing for the representation of tweets.•Classifier ensembles obtained from bag-of-words and feature hashing are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dss.2014.07.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9236
ispartof Decision Support Systems, 2014-10, Vol.66, p.170-179
issn 0167-9236
1873-5797
language eng
recordid cdi_proquest_miscellaneous_1651434577
source Elsevier ScienceDirect Journals
subjects Applied sciences
Bayesian analysis
Classification
Classifier ensembles
Classifiers
Computer science
control theory
systems
Data mining
Data processing. List processing. Character string processing
Decision support systems
Exact sciences and technology
Forests
Logistics
Memory organisation. Data processing
Monitoring
Regression
Regression analysis
Sentiment analysis
Social networks
Software
Studies
Text messaging
Twitter
User behavior
title Tweet sentiment analysis with classifier ensembles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tweet%20sentiment%20analysis%20with%20classifier%20ensembles&rft.jtitle=Decision%20Support%20Systems&rft.au=da%20Silva,%20N%C3%A1dia%20F.F.&rft.date=2014-10-01&rft.volume=66&rft.spage=170&rft.epage=179&rft.pages=170-179&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/j.dss.2014.07.003&rft_dat=%3Cproquest_cross%3E3463392851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1613004728&rft_id=info:pmid/&rft_els_id=S0167923614001997&rfr_iscdi=true