An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary

•Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived. Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2013-09, Vol.77, p.131-138
Hauptverfasser: Lee, Hongsuk, Tomar, Vikas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue
container_start_page 131
container_title Computational materials science
container_volume 77
creator Lee, Hongsuk
Tomar, Vikas
description •Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived. Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications is considered an important detriment. In the present work, embrittlement in a nickel (Ni)-doped tungsten (W) 〈100〉–〈210〉 GB is examined using ab initio simulations based on Car Parrinello molecular dynamics (CPMDs) framework. The atomic fraction of substituted Ni atoms in the examined W GB and simulation temperature are varied in order to understand the strength of the W GB as a function of temperature. An increase in the Ni atomic fraction in the W GB from 12.5% to above 25% value leads to a peak in yield strength and reduction in the strain corresponding to the ultimate tensile strength which can be characterized as embrittlement. While the elastic modulus does not show a dependence on Ni atomic fraction variation and temperature, the yield strength, the ultimate tensile strength, and the fracture strength show an appreciable dependence. Addition of Ni atoms adds localized peaks in f-orbital electron density of states which is found to contribute to increase in the bond strength with increase in Ni atomic fraction. Based on analyses performed, a relation expressing tensile strength of the examined W GB as a function of W surface energy, Ni atomic fraction, and simulation temperature is derived. The relation is shown to predict temperature dependent strength of examined Ni-doped W GB that fits the simulation data.
doi_str_mv 10.1016/j.commatsci.2013.04.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651432864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025613002061</els_id><sourcerecordid>1651432864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-71dc859d1e3c4477969bd81694fce77f1fe27afdeb4d9d1bdbe337128717644e3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqXwDHhBYkmwEzdOxqriJlVigRXLsY9bl8Qutovg7XHVipXpDOf7z-VD6JqSkhLa3G1K5cdRpqhsWRFal4SVpGYnaEJb3hWkJfQUTUhX8YJUs-YcXcS4ITnZtdUEvc8dhm85WieT9Q57g51VHzBg7bfWrTAYAyrh3EprwCOotcyAHHBMAdwqrfcRidPOrWICh1dBWod7v3Nahp9LdGbkEOHqWKfo7eH-dfFULF8enxfzZaFq3qaCU63aWacp1Ioxzrum63WbT2RGAeeGGqi4NBp6pjPV6x7qmtOq5ZQ3jEE9RbeHudvgP3cQkxhtVDAM0oHfRUGbGWV11TYso_yAquBjDGDENtgx3yooEXujYiP-jIq9UUGYyEZz8ua4RMZswATplI1_8Yo3nDWMZm5-4CB__GUhiDwJnAJtQ3YptLf_7voFwp2Rng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651432864</pqid></control><display><type>article</type><title>An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, Hongsuk ; Tomar, Vikas</creator><creatorcontrib>Lee, Hongsuk ; Tomar, Vikas</creatorcontrib><description>•Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived. Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications is considered an important detriment. In the present work, embrittlement in a nickel (Ni)-doped tungsten (W) 〈100〉–〈210〉 GB is examined using ab initio simulations based on Car Parrinello molecular dynamics (CPMDs) framework. The atomic fraction of substituted Ni atoms in the examined W GB and simulation temperature are varied in order to understand the strength of the W GB as a function of temperature. An increase in the Ni atomic fraction in the W GB from 12.5% to above 25% value leads to a peak in yield strength and reduction in the strain corresponding to the ultimate tensile strength which can be characterized as embrittlement. While the elastic modulus does not show a dependence on Ni atomic fraction variation and temperature, the yield strength, the ultimate tensile strength, and the fracture strength show an appreciable dependence. Addition of Ni atoms adds localized peaks in f-orbital electron density of states which is found to contribute to increase in the bond strength with increase in Ni atomic fraction. Based on analyses performed, a relation expressing tensile strength of the examined W GB as a function of W surface energy, Ni atomic fraction, and simulation temperature is derived. The relation is shown to predict temperature dependent strength of examined Ni-doped W GB that fits the simulation data.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2013.04.034</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ab-initio simulations ; Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Embrittlement ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Grain boundaries ; Grain boundary embrittlement ; Mathematical analysis ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Nanostructured tungsten ; Ni doping ; Nickel ; Physics ; Strength ; Tungsten ; Ultimate tensile strength</subject><ispartof>Computational materials science, 2013-09, Vol.77, p.131-138</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-71dc859d1e3c4477969bd81694fce77f1fe27afdeb4d9d1bdbe337128717644e3</citedby><cites>FETCH-LOGICAL-c378t-71dc859d1e3c4477969bd81694fce77f1fe27afdeb4d9d1bdbe337128717644e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2013.04.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27674641$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hongsuk</creatorcontrib><creatorcontrib>Tomar, Vikas</creatorcontrib><title>An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary</title><title>Computational materials science</title><description>•Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived. Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications is considered an important detriment. In the present work, embrittlement in a nickel (Ni)-doped tungsten (W) 〈100〉–〈210〉 GB is examined using ab initio simulations based on Car Parrinello molecular dynamics (CPMDs) framework. The atomic fraction of substituted Ni atoms in the examined W GB and simulation temperature are varied in order to understand the strength of the W GB as a function of temperature. An increase in the Ni atomic fraction in the W GB from 12.5% to above 25% value leads to a peak in yield strength and reduction in the strain corresponding to the ultimate tensile strength which can be characterized as embrittlement. While the elastic modulus does not show a dependence on Ni atomic fraction variation and temperature, the yield strength, the ultimate tensile strength, and the fracture strength show an appreciable dependence. Addition of Ni atoms adds localized peaks in f-orbital electron density of states which is found to contribute to increase in the bond strength with increase in Ni atomic fraction. Based on analyses performed, a relation expressing tensile strength of the examined W GB as a function of W surface energy, Ni atomic fraction, and simulation temperature is derived. The relation is shown to predict temperature dependent strength of examined Ni-doped W GB that fits the simulation data.</description><subject>Ab-initio simulations</subject><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Embrittlement</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Grain boundaries</subject><subject>Grain boundary embrittlement</subject><subject>Mathematical analysis</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Nanostructured tungsten</subject><subject>Ni doping</subject><subject>Nickel</subject><subject>Physics</subject><subject>Strength</subject><subject>Tungsten</subject><subject>Ultimate tensile strength</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqXwDHhBYkmwEzdOxqriJlVigRXLsY9bl8Qutovg7XHVipXpDOf7z-VD6JqSkhLa3G1K5cdRpqhsWRFal4SVpGYnaEJb3hWkJfQUTUhX8YJUs-YcXcS4ITnZtdUEvc8dhm85WieT9Q57g51VHzBg7bfWrTAYAyrh3EprwCOotcyAHHBMAdwqrfcRidPOrWICh1dBWod7v3Nahp9LdGbkEOHqWKfo7eH-dfFULF8enxfzZaFq3qaCU63aWacp1Ioxzrum63WbT2RGAeeGGqi4NBp6pjPV6x7qmtOq5ZQ3jEE9RbeHudvgP3cQkxhtVDAM0oHfRUGbGWV11TYso_yAquBjDGDENtgx3yooEXujYiP-jIq9UUGYyEZz8ua4RMZswATplI1_8Yo3nDWMZm5-4CB__GUhiDwJnAJtQ3YptLf_7voFwp2Rng</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Lee, Hongsuk</creator><creator>Tomar, Vikas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary</title><author>Lee, Hongsuk ; Tomar, Vikas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-71dc859d1e3c4477969bd81694fce77f1fe27afdeb4d9d1bdbe337128717644e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ab-initio simulations</topic><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Embrittlement</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Grain boundaries</topic><topic>Grain boundary embrittlement</topic><topic>Mathematical analysis</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Nanostructured tungsten</topic><topic>Ni doping</topic><topic>Nickel</topic><topic>Physics</topic><topic>Strength</topic><topic>Tungsten</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hongsuk</creatorcontrib><creatorcontrib>Tomar, Vikas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hongsuk</au><au>Tomar, Vikas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary</atitle><jtitle>Computational materials science</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>77</volume><spage>131</spage><epage>138</epage><pages>131-138</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>•Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived. Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications is considered an important detriment. In the present work, embrittlement in a nickel (Ni)-doped tungsten (W) 〈100〉–〈210〉 GB is examined using ab initio simulations based on Car Parrinello molecular dynamics (CPMDs) framework. The atomic fraction of substituted Ni atoms in the examined W GB and simulation temperature are varied in order to understand the strength of the W GB as a function of temperature. An increase in the Ni atomic fraction in the W GB from 12.5% to above 25% value leads to a peak in yield strength and reduction in the strain corresponding to the ultimate tensile strength which can be characterized as embrittlement. While the elastic modulus does not show a dependence on Ni atomic fraction variation and temperature, the yield strength, the ultimate tensile strength, and the fracture strength show an appreciable dependence. Addition of Ni atoms adds localized peaks in f-orbital electron density of states which is found to contribute to increase in the bond strength with increase in Ni atomic fraction. Based on analyses performed, a relation expressing tensile strength of the examined W GB as a function of W surface energy, Ni atomic fraction, and simulation temperature is derived. The relation is shown to predict temperature dependent strength of examined Ni-doped W GB that fits the simulation data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2013.04.034</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2013-09, Vol.77, p.131-138
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1651432864
source ScienceDirect Journals (5 years ago - present)
subjects Ab-initio simulations
Computer simulation
Condensed matter: structure, mechanical and thermal properties
Embrittlement
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Grain boundaries
Grain boundary embrittlement
Mathematical analysis
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Nanostructured tungsten
Ni doping
Nickel
Physics
Strength
Tungsten
Ultimate tensile strength
title An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20examination%20of%20nickel%20doping%20effect%20on%20the%20mechanical%20strength%20of%20a%20tungsten%20grain%20boundary&rft.jtitle=Computational%20materials%20science&rft.au=Lee,%20Hongsuk&rft.date=2013-09-01&rft.volume=77&rft.spage=131&rft.epage=138&rft.pages=131-138&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2013.04.034&rft_dat=%3Cproquest_cross%3E1651432864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651432864&rft_id=info:pmid/&rft_els_id=S0927025613002061&rfr_iscdi=true