An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary
•Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived. Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications i...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2013-09, Vol.77, p.131-138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | |
container_start_page | 131 |
container_title | Computational materials science |
container_volume | 77 |
creator | Lee, Hongsuk Tomar, Vikas |
description | •Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived.
Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications is considered an important detriment. In the present work, embrittlement in a nickel (Ni)-doped tungsten (W) 〈100〉–〈210〉 GB is examined using ab initio simulations based on Car Parrinello molecular dynamics (CPMDs) framework. The atomic fraction of substituted Ni atoms in the examined W GB and simulation temperature are varied in order to understand the strength of the W GB as a function of temperature. An increase in the Ni atomic fraction in the W GB from 12.5% to above 25% value leads to a peak in yield strength and reduction in the strain corresponding to the ultimate tensile strength which can be characterized as embrittlement. While the elastic modulus does not show a dependence on Ni atomic fraction variation and temperature, the yield strength, the ultimate tensile strength, and the fracture strength show an appreciable dependence. Addition of Ni atoms adds localized peaks in f-orbital electron density of states which is found to contribute to increase in the bond strength with increase in Ni atomic fraction. Based on analyses performed, a relation expressing tensile strength of the examined W GB as a function of W surface energy, Ni atomic fraction, and simulation temperature is derived. The relation is shown to predict temperature dependent strength of examined Ni-doped W GB that fits the simulation data. |
doi_str_mv | 10.1016/j.commatsci.2013.04.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651432864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025613002061</els_id><sourcerecordid>1651432864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-71dc859d1e3c4477969bd81694fce77f1fe27afdeb4d9d1bdbe337128717644e3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqXwDHhBYkmwEzdOxqriJlVigRXLsY9bl8Qutovg7XHVipXpDOf7z-VD6JqSkhLa3G1K5cdRpqhsWRFal4SVpGYnaEJb3hWkJfQUTUhX8YJUs-YcXcS4ITnZtdUEvc8dhm85WieT9Q57g51VHzBg7bfWrTAYAyrh3EprwCOotcyAHHBMAdwqrfcRidPOrWICh1dBWod7v3Nahp9LdGbkEOHqWKfo7eH-dfFULF8enxfzZaFq3qaCU63aWacp1Ioxzrum63WbT2RGAeeGGqi4NBp6pjPV6x7qmtOq5ZQ3jEE9RbeHudvgP3cQkxhtVDAM0oHfRUGbGWV11TYso_yAquBjDGDENtgx3yooEXujYiP-jIq9UUGYyEZz8ua4RMZswATplI1_8Yo3nDWMZm5-4CB__GUhiDwJnAJtQ3YptLf_7voFwp2Rng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651432864</pqid></control><display><type>article</type><title>An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, Hongsuk ; Tomar, Vikas</creator><creatorcontrib>Lee, Hongsuk ; Tomar, Vikas</creatorcontrib><description>•Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived.
Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications is considered an important detriment. In the present work, embrittlement in a nickel (Ni)-doped tungsten (W) 〈100〉–〈210〉 GB is examined using ab initio simulations based on Car Parrinello molecular dynamics (CPMDs) framework. The atomic fraction of substituted Ni atoms in the examined W GB and simulation temperature are varied in order to understand the strength of the W GB as a function of temperature. An increase in the Ni atomic fraction in the W GB from 12.5% to above 25% value leads to a peak in yield strength and reduction in the strain corresponding to the ultimate tensile strength which can be characterized as embrittlement. While the elastic modulus does not show a dependence on Ni atomic fraction variation and temperature, the yield strength, the ultimate tensile strength, and the fracture strength show an appreciable dependence. Addition of Ni atoms adds localized peaks in f-orbital electron density of states which is found to contribute to increase in the bond strength with increase in Ni atomic fraction. Based on analyses performed, a relation expressing tensile strength of the examined W GB as a function of W surface energy, Ni atomic fraction, and simulation temperature is derived. The relation is shown to predict temperature dependent strength of examined Ni-doped W GB that fits the simulation data.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2013.04.034</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ab-initio simulations ; Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Embrittlement ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Grain boundaries ; Grain boundary embrittlement ; Mathematical analysis ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Nanostructured tungsten ; Ni doping ; Nickel ; Physics ; Strength ; Tungsten ; Ultimate tensile strength</subject><ispartof>Computational materials science, 2013-09, Vol.77, p.131-138</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-71dc859d1e3c4477969bd81694fce77f1fe27afdeb4d9d1bdbe337128717644e3</citedby><cites>FETCH-LOGICAL-c378t-71dc859d1e3c4477969bd81694fce77f1fe27afdeb4d9d1bdbe337128717644e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2013.04.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27674641$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hongsuk</creatorcontrib><creatorcontrib>Tomar, Vikas</creatorcontrib><title>An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary</title><title>Computational materials science</title><description>•Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived.
Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications is considered an important detriment. In the present work, embrittlement in a nickel (Ni)-doped tungsten (W) 〈100〉–〈210〉 GB is examined using ab initio simulations based on Car Parrinello molecular dynamics (CPMDs) framework. The atomic fraction of substituted Ni atoms in the examined W GB and simulation temperature are varied in order to understand the strength of the W GB as a function of temperature. An increase in the Ni atomic fraction in the W GB from 12.5% to above 25% value leads to a peak in yield strength and reduction in the strain corresponding to the ultimate tensile strength which can be characterized as embrittlement. While the elastic modulus does not show a dependence on Ni atomic fraction variation and temperature, the yield strength, the ultimate tensile strength, and the fracture strength show an appreciable dependence. Addition of Ni atoms adds localized peaks in f-orbital electron density of states which is found to contribute to increase in the bond strength with increase in Ni atomic fraction. Based on analyses performed, a relation expressing tensile strength of the examined W GB as a function of W surface energy, Ni atomic fraction, and simulation temperature is derived. The relation is shown to predict temperature dependent strength of examined Ni-doped W GB that fits the simulation data.</description><subject>Ab-initio simulations</subject><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Embrittlement</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Grain boundaries</subject><subject>Grain boundary embrittlement</subject><subject>Mathematical analysis</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Nanostructured tungsten</subject><subject>Ni doping</subject><subject>Nickel</subject><subject>Physics</subject><subject>Strength</subject><subject>Tungsten</subject><subject>Ultimate tensile strength</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqXwDHhBYkmwEzdOxqriJlVigRXLsY9bl8Qutovg7XHVipXpDOf7z-VD6JqSkhLa3G1K5cdRpqhsWRFal4SVpGYnaEJb3hWkJfQUTUhX8YJUs-YcXcS4ITnZtdUEvc8dhm85WieT9Q57g51VHzBg7bfWrTAYAyrh3EprwCOotcyAHHBMAdwqrfcRidPOrWICh1dBWod7v3Nahp9LdGbkEOHqWKfo7eH-dfFULF8enxfzZaFq3qaCU63aWacp1Ioxzrum63WbT2RGAeeGGqi4NBp6pjPV6x7qmtOq5ZQ3jEE9RbeHudvgP3cQkxhtVDAM0oHfRUGbGWV11TYso_yAquBjDGDENtgx3yooEXujYiP-jIq9UUGYyEZz8ua4RMZswATplI1_8Yo3nDWMZm5-4CB__GUhiDwJnAJtQ3YptLf_7voFwp2Rng</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Lee, Hongsuk</creator><creator>Tomar, Vikas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary</title><author>Lee, Hongsuk ; Tomar, Vikas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-71dc859d1e3c4477969bd81694fce77f1fe27afdeb4d9d1bdbe337128717644e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ab-initio simulations</topic><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Embrittlement</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Grain boundaries</topic><topic>Grain boundary embrittlement</topic><topic>Mathematical analysis</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Nanostructured tungsten</topic><topic>Ni doping</topic><topic>Nickel</topic><topic>Physics</topic><topic>Strength</topic><topic>Tungsten</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hongsuk</creatorcontrib><creatorcontrib>Tomar, Vikas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hongsuk</au><au>Tomar, Vikas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary</atitle><jtitle>Computational materials science</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>77</volume><spage>131</spage><epage>138</epage><pages>131-138</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>•Embrittlement in a Ni-doped W GB is shown using ab initio simulations.•Role of electrons and phonons in GB mechanical strength is shown.•An analytical relation to describe GB strength is derived.
Grain boundary (GB) embrittlement in nanostructured metals intended for high temperature applications is considered an important detriment. In the present work, embrittlement in a nickel (Ni)-doped tungsten (W) 〈100〉–〈210〉 GB is examined using ab initio simulations based on Car Parrinello molecular dynamics (CPMDs) framework. The atomic fraction of substituted Ni atoms in the examined W GB and simulation temperature are varied in order to understand the strength of the W GB as a function of temperature. An increase in the Ni atomic fraction in the W GB from 12.5% to above 25% value leads to a peak in yield strength and reduction in the strain corresponding to the ultimate tensile strength which can be characterized as embrittlement. While the elastic modulus does not show a dependence on Ni atomic fraction variation and temperature, the yield strength, the ultimate tensile strength, and the fracture strength show an appreciable dependence. Addition of Ni atoms adds localized peaks in f-orbital electron density of states which is found to contribute to increase in the bond strength with increase in Ni atomic fraction. Based on analyses performed, a relation expressing tensile strength of the examined W GB as a function of W surface energy, Ni atomic fraction, and simulation temperature is derived. The relation is shown to predict temperature dependent strength of examined Ni-doped W GB that fits the simulation data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2013.04.034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2013-09, Vol.77, p.131-138 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651432864 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Ab-initio simulations Computer simulation Condensed matter: structure, mechanical and thermal properties Embrittlement Exact sciences and technology Fatigue, brittleness, fracture, and cracks Grain boundaries Grain boundary embrittlement Mathematical analysis Mechanical and acoustical properties of condensed matter Mechanical properties of solids Nanostructured tungsten Ni doping Nickel Physics Strength Tungsten Ultimate tensile strength |
title | An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20examination%20of%20nickel%20doping%20effect%20on%20the%20mechanical%20strength%20of%20a%20tungsten%20grain%20boundary&rft.jtitle=Computational%20materials%20science&rft.au=Lee,%20Hongsuk&rft.date=2013-09-01&rft.volume=77&rft.spage=131&rft.epage=138&rft.pages=131-138&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2013.04.034&rft_dat=%3Cproquest_cross%3E1651432864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651432864&rft_id=info:pmid/&rft_els_id=S0927025613002061&rfr_iscdi=true |