Liquid propellant engine conceptual design by using a fuzzy-multi-objective genetic algorithm (MOGA) optimization method

This paper presents an extension of fuzzy-multi-objective genetic algorithm (MOGA) optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2014-12, Vol.228 (14), p.2587-2603
Hauptverfasser: Mirshams, M, Naseh, H, Taei, H, Fazeley, HR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2603
container_issue 14
container_start_page 2587
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 228
creator Mirshams, M
Naseh, H
Taei, H
Fazeley, HR
description This paper presents an extension of fuzzy-multi-objective genetic algorithm (MOGA) optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. The primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and the minimum weight. The independent design variables in this model are combustion chamber pressure, exit pressure, oxidizer to fuel mass flow rate. To handle the mentioned problems, a fuzzy-multi-objective genetic algorithm optimization methodology is developed based on Pareto optimal set. Liquid propellant engine, F-1 is modeled to illustrate accuracy and efficiency of proposed methodology.
doi_str_mv 10.1177/0954410014521390
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651432140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410014521390</sage_id><sourcerecordid>1651432140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-c0d2066dd2613e54e387507665fdd0bb183dfeff1691f59a445436ec02393f9c3</originalsourceid><addsrcrecordid>eNp1kb1PwzAQxS0EEqWwM1pigSFgxx9txgrxJRWxwBy59jl1ldhp7CDav56UMqBK3HLD-93p3j2ELim5pXQyuSOF4JwSQrnIKSvIERrlhNOMkVwco9FOznb6KTqLcUWGEpKN0NfcrXtncNuFFupa-YTBV84D1sFraFOvamwgusrjxQb30fkKK2z77XaTNX2dXBYWK9DJfQKuwENyGqu6Cp1LywZfv749zW5waJNr3FYlFzxuIC2DOUcnVtURLn77GH08PrzfP2fzt6eX-9k804znKdPE5ERKY3JJGQgObDoRZCKlsMaQxYJOmbFgLZUFtaJQnAvOJGiSs4LZQrMxut7vHRyue4ipbFzUP1Yh9LGkUlDOcsrJgF4doKvQd364bqCYpIUcvjhQZE_pLsTYgS3bzjWq25SUlLsoysMohpFsPxJVBX-W_sd_A_OCiLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636196095</pqid></control><display><type>article</type><title>Liquid propellant engine conceptual design by using a fuzzy-multi-objective genetic algorithm (MOGA) optimization method</title><source>SAGE Complete A-Z List</source><creator>Mirshams, M ; Naseh, H ; Taei, H ; Fazeley, HR</creator><creatorcontrib>Mirshams, M ; Naseh, H ; Taei, H ; Fazeley, HR</creatorcontrib><description>This paper presents an extension of fuzzy-multi-objective genetic algorithm (MOGA) optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. The primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and the minimum weight. The independent design variables in this model are combustion chamber pressure, exit pressure, oxidizer to fuel mass flow rate. To handle the mentioned problems, a fuzzy-multi-objective genetic algorithm optimization methodology is developed based on Pareto optimal set. Liquid propellant engine, F-1 is modeled to illustrate accuracy and efficiency of proposed methodology.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410014521390</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerospace engineering ; Design optimization ; Engines ; Fuzzy sets ; Genetic algorithms ; Liquid propellants ; Mathematical models ; Methodology ; Minimum weight ; Optimization ; Oxidizers ; Pressure</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2014-12, Vol.228 (14), p.2587-2603</ispartof><rights>IMechE 2014</rights><rights>Copyright SAGE PUBLICATIONS, INC. Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-c0d2066dd2613e54e387507665fdd0bb183dfeff1691f59a445436ec02393f9c3</citedby><cites>FETCH-LOGICAL-c342t-c0d2066dd2613e54e387507665fdd0bb183dfeff1691f59a445436ec02393f9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410014521390$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410014521390$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Mirshams, M</creatorcontrib><creatorcontrib>Naseh, H</creatorcontrib><creatorcontrib>Taei, H</creatorcontrib><creatorcontrib>Fazeley, HR</creatorcontrib><title>Liquid propellant engine conceptual design by using a fuzzy-multi-objective genetic algorithm (MOGA) optimization method</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>This paper presents an extension of fuzzy-multi-objective genetic algorithm (MOGA) optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. The primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and the minimum weight. The independent design variables in this model are combustion chamber pressure, exit pressure, oxidizer to fuel mass flow rate. To handle the mentioned problems, a fuzzy-multi-objective genetic algorithm optimization methodology is developed based on Pareto optimal set. Liquid propellant engine, F-1 is modeled to illustrate accuracy and efficiency of proposed methodology.</description><subject>Aerospace engineering</subject><subject>Design optimization</subject><subject>Engines</subject><subject>Fuzzy sets</subject><subject>Genetic algorithms</subject><subject>Liquid propellants</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Minimum weight</subject><subject>Optimization</subject><subject>Oxidizers</subject><subject>Pressure</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kb1PwzAQxS0EEqWwM1pigSFgxx9txgrxJRWxwBy59jl1ldhp7CDav56UMqBK3HLD-93p3j2ELim5pXQyuSOF4JwSQrnIKSvIERrlhNOMkVwco9FOznb6KTqLcUWGEpKN0NfcrXtncNuFFupa-YTBV84D1sFraFOvamwgusrjxQb30fkKK2z77XaTNX2dXBYWK9DJfQKuwENyGqu6Cp1LywZfv749zW5waJNr3FYlFzxuIC2DOUcnVtURLn77GH08PrzfP2fzt6eX-9k804znKdPE5ERKY3JJGQgObDoRZCKlsMaQxYJOmbFgLZUFtaJQnAvOJGiSs4LZQrMxut7vHRyue4ipbFzUP1Yh9LGkUlDOcsrJgF4doKvQd364bqCYpIUcvjhQZE_pLsTYgS3bzjWq25SUlLsoysMohpFsPxJVBX-W_sd_A_OCiLk</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Mirshams, M</creator><creator>Naseh, H</creator><creator>Taei, H</creator><creator>Fazeley, HR</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>Liquid propellant engine conceptual design by using a fuzzy-multi-objective genetic algorithm (MOGA) optimization method</title><author>Mirshams, M ; Naseh, H ; Taei, H ; Fazeley, HR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-c0d2066dd2613e54e387507665fdd0bb183dfeff1691f59a445436ec02393f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerospace engineering</topic><topic>Design optimization</topic><topic>Engines</topic><topic>Fuzzy sets</topic><topic>Genetic algorithms</topic><topic>Liquid propellants</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Minimum weight</topic><topic>Optimization</topic><topic>Oxidizers</topic><topic>Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirshams, M</creatorcontrib><creatorcontrib>Naseh, H</creatorcontrib><creatorcontrib>Taei, H</creatorcontrib><creatorcontrib>Fazeley, HR</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirshams, M</au><au>Naseh, H</au><au>Taei, H</au><au>Fazeley, HR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid propellant engine conceptual design by using a fuzzy-multi-objective genetic algorithm (MOGA) optimization method</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>228</volume><issue>14</issue><spage>2587</spage><epage>2603</epage><pages>2587-2603</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>This paper presents an extension of fuzzy-multi-objective genetic algorithm (MOGA) optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. The primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and the minimum weight. The independent design variables in this model are combustion chamber pressure, exit pressure, oxidizer to fuel mass flow rate. To handle the mentioned problems, a fuzzy-multi-objective genetic algorithm optimization methodology is developed based on Pareto optimal set. Liquid propellant engine, F-1 is modeled to illustrate accuracy and efficiency of proposed methodology.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410014521390</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2014-12, Vol.228 (14), p.2587-2603
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_miscellaneous_1651432140
source SAGE Complete A-Z List
subjects Aerospace engineering
Design optimization
Engines
Fuzzy sets
Genetic algorithms
Liquid propellants
Mathematical models
Methodology
Minimum weight
Optimization
Oxidizers
Pressure
title Liquid propellant engine conceptual design by using a fuzzy-multi-objective genetic algorithm (MOGA) optimization method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20propellant%20engine%20conceptual%20design%20by%20using%20a%20fuzzy-multi-objective%20genetic%20algorithm%20(MOGA)%20optimization%20method&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Mirshams,%20M&rft.date=2014-12-01&rft.volume=228&rft.issue=14&rft.spage=2587&rft.epage=2603&rft.pages=2587-2603&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410014521390&rft_dat=%3Cproquest_cross%3E1651432140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636196095&rft_id=info:pmid/&rft_sage_id=10.1177_0954410014521390&rfr_iscdi=true