Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells

Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology grea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2014-11, Vol.7 (11), p.1569-1580
Hauptverfasser: Wang, Rongyue, Liu, Jianguo, Liu, Pan, Bi, Xuanxuan, Yan, Xiuling, Wang, Wenxin, Meng, Yifei, Ge, Xingbo, Chen, Mingwei, Ding, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1580
container_issue 11
container_start_page 1569
container_title Nano research
container_volume 7
creator Wang, Rongyue
Liu, Jianguo
Liu, Pan
Bi, Xuanxuan
Yan, Xiuling
Wang, Wenxin
Meng, Yifei
Ge, Xingbo
Chen, Mingwei
Ding, Yi
description Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm −2 , while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.
doi_str_mv 10.1007/s12274-014-0517-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651431471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651431471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-2585de4325f318da83ba63450294e1eb3f931203c0eac7caf086de7ef050b0be3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG8BL16qmaTpx1EWv2BBD-7FS0iTyW6XbLsmLbL_3pQqiODAMHN43pmXN0kugd4ApcVtAMaKLKUQW0CRVkfJDKqqTGms458dWHaanIWwpTRnkJWz5H3leq_SftO0xKkDehJ6P-h-8GiIajuDgdjOk02z3rgDMYNXtUPius_0tSem8aj7Edg1mijdGGIHdESjc-E8ObHKBbz4nvNk9XD_tnhKly-Pz4u7ZaqFEH3KRCkMZpwJy6E0quS1ynkmKKsyBKy5rTgwyjVFpQutLC1zgwVaKmhNa-Tz5Hq6u_fdx4Chl7smjA5Ui90QJOQCMg5ZARG9-oNuu8G30V2kWB7fUMEjBROlfReCRyv3vtkpf5BA5Zi2nNKWMW05pi2rqGGTJkS2XaP_dflf0RdHKYGq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626120053</pqid></control><display><type>article</type><title>Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Rongyue ; Liu, Jianguo ; Liu, Pan ; Bi, Xuanxuan ; Yan, Xiuling ; Wang, Wenxin ; Meng, Yifei ; Ge, Xingbo ; Chen, Mingwei ; Ding, Yi</creator><creatorcontrib>Wang, Rongyue ; Liu, Jianguo ; Liu, Pan ; Bi, Xuanxuan ; Yan, Xiuling ; Wang, Wenxin ; Meng, Yifei ; Ge, Xingbo ; Chen, Mingwei ; Ding, Yi</creatorcontrib><description>Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm −2 , while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-014-0517-9</identifier><language>eng</language><publisher>Heidelberg: Tsinghua University Press</publisher><subject>Acids ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Catalysis ; Catalysts ; Chemistry and Materials Science ; Condensed Matter Physics ; Durability ; Electrodes ; Formic acid ; Fuel cells ; Fuel technology ; Gold ; Low temperature ; Materials Science ; Nanoparticles ; Nanostructure ; Nanotechnology ; Oxidation ; Platinum ; Poisoning ; Precious metals ; Research Article ; Thin films</subject><ispartof>Nano research, 2014-11, Vol.7 (11), p.1569-1580</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-2585de4325f318da83ba63450294e1eb3f931203c0eac7caf086de7ef050b0be3</citedby><cites>FETCH-LOGICAL-c555t-2585de4325f318da83ba63450294e1eb3f931203c0eac7caf086de7ef050b0be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-014-0517-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-014-0517-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Wang, Rongyue</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Bi, Xuanxuan</creatorcontrib><creatorcontrib>Yan, Xiuling</creatorcontrib><creatorcontrib>Wang, Wenxin</creatorcontrib><creatorcontrib>Meng, Yifei</creatorcontrib><creatorcontrib>Ge, Xingbo</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><creatorcontrib>Ding, Yi</creatorcontrib><title>Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm −2 , while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.</description><subject>Acids</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Durability</subject><subject>Electrodes</subject><subject>Formic acid</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Gold</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Poisoning</subject><subject>Precious metals</subject><subject>Research Article</subject><subject>Thin films</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosouK7-AG8BL16qmaTpx1EWv2BBD-7FS0iTyW6XbLsmLbL_3pQqiODAMHN43pmXN0kugd4ApcVtAMaKLKUQW0CRVkfJDKqqTGms458dWHaanIWwpTRnkJWz5H3leq_SftO0xKkDehJ6P-h-8GiIajuDgdjOk02z3rgDMYNXtUPius_0tSem8aj7Edg1mijdGGIHdESjc-E8ObHKBbz4nvNk9XD_tnhKly-Pz4u7ZaqFEH3KRCkMZpwJy6E0quS1ynkmKKsyBKy5rTgwyjVFpQutLC1zgwVaKmhNa-Tz5Hq6u_fdx4Chl7smjA5Ui90QJOQCMg5ZARG9-oNuu8G30V2kWB7fUMEjBROlfReCRyv3vtkpf5BA5Zi2nNKWMW05pi2rqGGTJkS2XaP_dflf0RdHKYGq</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Wang, Rongyue</creator><creator>Liu, Jianguo</creator><creator>Liu, Pan</creator><creator>Bi, Xuanxuan</creator><creator>Yan, Xiuling</creator><creator>Wang, Wenxin</creator><creator>Meng, Yifei</creator><creator>Ge, Xingbo</creator><creator>Chen, Mingwei</creator><creator>Ding, Yi</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SP</scope><scope>7TB</scope><scope>H8D</scope></search><sort><creationdate>20141101</creationdate><title>Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells</title><author>Wang, Rongyue ; Liu, Jianguo ; Liu, Pan ; Bi, Xuanxuan ; Yan, Xiuling ; Wang, Wenxin ; Meng, Yifei ; Ge, Xingbo ; Chen, Mingwei ; Ding, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-2585de4325f318da83ba63450294e1eb3f931203c0eac7caf086de7ef050b0be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Durability</topic><topic>Electrodes</topic><topic>Formic acid</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Gold</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Poisoning</topic><topic>Precious metals</topic><topic>Research Article</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rongyue</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Bi, Xuanxuan</creatorcontrib><creatorcontrib>Yan, Xiuling</creatorcontrib><creatorcontrib>Wang, Wenxin</creatorcontrib><creatorcontrib>Meng, Yifei</creatorcontrib><creatorcontrib>Ge, Xingbo</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><creatorcontrib>Ding, Yi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Aerospace Database</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rongyue</au><au>Liu, Jianguo</au><au>Liu, Pan</au><au>Bi, Xuanxuan</au><au>Yan, Xiuling</au><au>Wang, Wenxin</au><au>Meng, Yifei</au><au>Ge, Xingbo</au><au>Chen, Mingwei</au><au>Ding, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>7</volume><issue>11</issue><spage>1569</spage><epage>1580</epage><pages>1569-1580</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm −2 , while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.</abstract><cop>Heidelberg</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-014-0517-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2014-11, Vol.7 (11), p.1569-1580
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_miscellaneous_1651431471
source Springer Nature - Complete Springer Journals
subjects Acids
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon
Catalysis
Catalysts
Chemistry and Materials Science
Condensed Matter Physics
Durability
Electrodes
Formic acid
Fuel cells
Fuel technology
Gold
Low temperature
Materials Science
Nanoparticles
Nanostructure
Nanotechnology
Oxidation
Platinum
Poisoning
Precious metals
Research Article
Thin films
title Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-thin%20layer%20structured%20anodes%20for%20highly%20durable%20low-Pt%20direct%20formic%20acid%20fuel%20cells&rft.jtitle=Nano%20research&rft.au=Wang,%20Rongyue&rft.date=2014-11-01&rft.volume=7&rft.issue=11&rft.spage=1569&rft.epage=1580&rft.pages=1569-1580&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-014-0517-9&rft_dat=%3Cproquest_cross%3E1651431471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626120053&rft_id=info:pmid/&rfr_iscdi=true