Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells
Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology grea...
Gespeichert in:
Veröffentlicht in: | Nano research 2014-11, Vol.7 (11), p.1569-1580 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1580 |
---|---|
container_issue | 11 |
container_start_page | 1569 |
container_title | Nano research |
container_volume | 7 |
creator | Wang, Rongyue Liu, Jianguo Liu, Pan Bi, Xuanxuan Yan, Xiuling Wang, Wenxin Meng, Yifei Ge, Xingbo Chen, Mingwei Ding, Yi |
description | Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm
−2
, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices. |
doi_str_mv | 10.1007/s12274-014-0517-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651431471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651431471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-2585de4325f318da83ba63450294e1eb3f931203c0eac7caf086de7ef050b0be3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG8BL16qmaTpx1EWv2BBD-7FS0iTyW6XbLsmLbL_3pQqiODAMHN43pmXN0kugd4ApcVtAMaKLKUQW0CRVkfJDKqqTGms458dWHaanIWwpTRnkJWz5H3leq_SftO0xKkDehJ6P-h-8GiIajuDgdjOk02z3rgDMYNXtUPius_0tSem8aj7Edg1mijdGGIHdESjc-E8ObHKBbz4nvNk9XD_tnhKly-Pz4u7ZaqFEH3KRCkMZpwJy6E0quS1ynkmKKsyBKy5rTgwyjVFpQutLC1zgwVaKmhNa-Tz5Hq6u_fdx4Chl7smjA5Ui90QJOQCMg5ZARG9-oNuu8G30V2kWB7fUMEjBROlfReCRyv3vtkpf5BA5Zi2nNKWMW05pi2rqGGTJkS2XaP_dflf0RdHKYGq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626120053</pqid></control><display><type>article</type><title>Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Rongyue ; Liu, Jianguo ; Liu, Pan ; Bi, Xuanxuan ; Yan, Xiuling ; Wang, Wenxin ; Meng, Yifei ; Ge, Xingbo ; Chen, Mingwei ; Ding, Yi</creator><creatorcontrib>Wang, Rongyue ; Liu, Jianguo ; Liu, Pan ; Bi, Xuanxuan ; Yan, Xiuling ; Wang, Wenxin ; Meng, Yifei ; Ge, Xingbo ; Chen, Mingwei ; Ding, Yi</creatorcontrib><description>Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm
−2
, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-014-0517-9</identifier><language>eng</language><publisher>Heidelberg: Tsinghua University Press</publisher><subject>Acids ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Catalysis ; Catalysts ; Chemistry and Materials Science ; Condensed Matter Physics ; Durability ; Electrodes ; Formic acid ; Fuel cells ; Fuel technology ; Gold ; Low temperature ; Materials Science ; Nanoparticles ; Nanostructure ; Nanotechnology ; Oxidation ; Platinum ; Poisoning ; Precious metals ; Research Article ; Thin films</subject><ispartof>Nano research, 2014-11, Vol.7 (11), p.1569-1580</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-2585de4325f318da83ba63450294e1eb3f931203c0eac7caf086de7ef050b0be3</citedby><cites>FETCH-LOGICAL-c555t-2585de4325f318da83ba63450294e1eb3f931203c0eac7caf086de7ef050b0be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-014-0517-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-014-0517-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Wang, Rongyue</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Bi, Xuanxuan</creatorcontrib><creatorcontrib>Yan, Xiuling</creatorcontrib><creatorcontrib>Wang, Wenxin</creatorcontrib><creatorcontrib>Meng, Yifei</creatorcontrib><creatorcontrib>Ge, Xingbo</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><creatorcontrib>Ding, Yi</creatorcontrib><title>Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm
−2
, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.</description><subject>Acids</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Durability</subject><subject>Electrodes</subject><subject>Formic acid</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Gold</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Poisoning</subject><subject>Precious metals</subject><subject>Research Article</subject><subject>Thin films</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosouK7-AG8BL16qmaTpx1EWv2BBD-7FS0iTyW6XbLsmLbL_3pQqiODAMHN43pmXN0kugd4ApcVtAMaKLKUQW0CRVkfJDKqqTGms458dWHaanIWwpTRnkJWz5H3leq_SftO0xKkDehJ6P-h-8GiIajuDgdjOk02z3rgDMYNXtUPius_0tSem8aj7Edg1mijdGGIHdESjc-E8ObHKBbz4nvNk9XD_tnhKly-Pz4u7ZaqFEH3KRCkMZpwJy6E0quS1ynkmKKsyBKy5rTgwyjVFpQutLC1zgwVaKmhNa-Tz5Hq6u_fdx4Chl7smjA5Ui90QJOQCMg5ZARG9-oNuu8G30V2kWB7fUMEjBROlfReCRyv3vtkpf5BA5Zi2nNKWMW05pi2rqGGTJkS2XaP_dflf0RdHKYGq</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Wang, Rongyue</creator><creator>Liu, Jianguo</creator><creator>Liu, Pan</creator><creator>Bi, Xuanxuan</creator><creator>Yan, Xiuling</creator><creator>Wang, Wenxin</creator><creator>Meng, Yifei</creator><creator>Ge, Xingbo</creator><creator>Chen, Mingwei</creator><creator>Ding, Yi</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SP</scope><scope>7TB</scope><scope>H8D</scope></search><sort><creationdate>20141101</creationdate><title>Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells</title><author>Wang, Rongyue ; Liu, Jianguo ; Liu, Pan ; Bi, Xuanxuan ; Yan, Xiuling ; Wang, Wenxin ; Meng, Yifei ; Ge, Xingbo ; Chen, Mingwei ; Ding, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-2585de4325f318da83ba63450294e1eb3f931203c0eac7caf086de7ef050b0be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Durability</topic><topic>Electrodes</topic><topic>Formic acid</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Gold</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Poisoning</topic><topic>Precious metals</topic><topic>Research Article</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rongyue</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Bi, Xuanxuan</creatorcontrib><creatorcontrib>Yan, Xiuling</creatorcontrib><creatorcontrib>Wang, Wenxin</creatorcontrib><creatorcontrib>Meng, Yifei</creatorcontrib><creatorcontrib>Ge, Xingbo</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><creatorcontrib>Ding, Yi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Aerospace Database</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rongyue</au><au>Liu, Jianguo</au><au>Liu, Pan</au><au>Bi, Xuanxuan</au><au>Yan, Xiuling</au><au>Wang, Wenxin</au><au>Meng, Yifei</au><au>Ge, Xingbo</au><au>Chen, Mingwei</au><au>Ding, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>7</volume><issue>11</issue><spage>1569</spage><epage>1580</epage><pages>1569-1580</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Direct formic acid fuel cells (DFAFCs) allow highly efficient low temperature conversion of chemical energy into electricity and are expected to play a vital role in our future sustainable society. However, the massive precious metal usage in current membrane electrode assembly (MEA) technology greatly inhibits their actual applications. Here we demonstrate a new type of anode constructed by confining highly active nanoengineered catalysts into an ultra-thin catalyst layer with thickness around 100 nm. Specifically, an atomic layer of platinum is first deposited onto nanoporous gold (NPG) leaf to achieve high utilization of Pt and easy accessibility of both reactants and electrons to active sites. These NPG-Pt core/shell nanostructures are further decorated by a sub-monolayer of Bi to create highly active reaction sites for formic acid electro-oxidation. Thus obtained layer-structured NPG-Pt-Bi thin films allow a dramatic decrease in Pt usage down to 3 μg·cm
−2
, while maintaining very high electrode activity and power performance at sufficiently low overall precious metal loading. Moreover, these electrode materials show superior durability during half-year test in actual DFAFCs, with remarkable resistance to common impurities in formic acid, which together imply their great potential in applications in actual devices.</abstract><cop>Heidelberg</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-014-0517-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2014-11, Vol.7 (11), p.1569-1580 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651431471 |
source | Springer Nature - Complete Springer Journals |
subjects | Acids Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon Catalysis Catalysts Chemistry and Materials Science Condensed Matter Physics Durability Electrodes Formic acid Fuel cells Fuel technology Gold Low temperature Materials Science Nanoparticles Nanostructure Nanotechnology Oxidation Platinum Poisoning Precious metals Research Article Thin films |
title | Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-thin%20layer%20structured%20anodes%20for%20highly%20durable%20low-Pt%20direct%20formic%20acid%20fuel%20cells&rft.jtitle=Nano%20research&rft.au=Wang,%20Rongyue&rft.date=2014-11-01&rft.volume=7&rft.issue=11&rft.spage=1569&rft.epage=1580&rft.pages=1569-1580&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-014-0517-9&rft_dat=%3Cproquest_cross%3E1651431471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626120053&rft_id=info:pmid/&rfr_iscdi=true |