Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers

•Incorporation of TCH-loaded HNTs improves the tensile strength of the nanofibrous mat.•Incorporation of TCH-loaded HNTs does not appreciably alter the mat morphology.•TCH/HNTs/PLGA composite nanofibers are cytocompatible.•TCH/HNTs/PLGA composite nanofibers are able to release TCH in a sustained man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2013-10, Vol.110, p.148-155
Hauptverfasser: Qi, Ruiling, Guo, Rui, Zheng, Fuyin, Liu, Hui, Yu, Jianyong, Shi, Xiangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 148
container_title Colloids and surfaces, B, Biointerfaces
container_volume 110
creator Qi, Ruiling
Guo, Rui
Zheng, Fuyin
Liu, Hui
Yu, Jianyong
Shi, Xiangyang
description •Incorporation of TCH-loaded HNTs improves the tensile strength of the nanofibrous mat.•Incorporation of TCH-loaded HNTs does not appreciably alter the mat morphology.•TCH/HNTs/PLGA composite nanofibers are cytocompatible.•TCH/HNTs/PLGA composite nanofibers are able to release TCH in a sustained manner.•TCH/HNTs/PLGA composite nanofibers display non-compromised antimicrobial activity. Fabrication of nanofiber-based drug delivery system with controlled release property is of general interest in biomedical sciences. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded halloysite nanotubes/poly(lactic-co-glycolic acid) composite nanofibers (TCH/HNTs/PLGA), and evaluated the drug release and antibacterial activity of this drug delivery system. The structure, morphology, and mechanical properties of the formed electrospun TCH/HNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. We show that the incorporation of TCH-loaded HNTs within the PLGA nanofibers is able to improve the tensile strength and maintain the three-dimensional structure of the nanofibrous mats. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the fibrous scaffolds demonstrate that the developed TCH/HNTs/PLGA composite nanofibers are cytocompatible. More importantly, the TCH/HNTs/PLGA composite nanofibers are able to release the antibacterial drug TCH in a sustained manner for 42 days and display antimicrobial activity solely associated with the encapsulated TCH drug. With the improved mechanical durability, sustained drug release profile, good cytocompatibility, and non-compromised therapeutic efficacy, the developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for tissue engineering and drug delivery applications.
doi_str_mv 10.1016/j.colsurfb.2013.04.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651429463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776513002944</els_id><sourcerecordid>1371271568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-6431442a7b151c131f0a5d68c6bc01c96b0db1cd2f82fdd20d7cda06896bb2463</originalsourceid><addsrcrecordid>eNqNkcFu3CAURVHVqpkk_YXUy3Rhh4cxeHatRmlSKVIXTdYIA04ZMcYFO5L_IR_dN3LSbbNAIL1zL0_3EnIBtAIK4mpfmRjynPquYhTqivKK1uId2UAr65LXQr4nG7plspRSNCfkNOc9pZRxkB_JCaslgGybDXnexWFKMQRni-SC09kVerB4Jt9pM7nkdSjw4Z_8tBSxXyc-Tt6UIWqLOpQZ9MjjPBS_dQhxyX5yV2MMy2U4Sk1pYvkYFlzZGzTz9kth4mGMR64Y9BB737mUz8mHXofsPr3cZ-Th-_X97ra8-3nzY_ftrjS8aadS8Bo4Z1p20ICBGnqqGytaIzpDwWxFR20HxrK-Zb21jFpprKaixUnHuKjPyOXqO6b4Z3Z5UgefjQtBDy7OWYFogLMtkm9AORNABX2DK4bOJDSiRVSsqMHYcnK9GpM_6LQooOrYr9qr137VsV9FucJ-UXjx8sfcHZz9J3stFIHPK9DrqPRj8lk9_EIHgeXXom0ZEl9XwmHCT94llY13g3HWJ-xR2ej_t8VfuBbGQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371271568</pqid></control><display><type>article</type><title>Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Qi, Ruiling ; Guo, Rui ; Zheng, Fuyin ; Liu, Hui ; Yu, Jianyong ; Shi, Xiangyang</creator><creatorcontrib>Qi, Ruiling ; Guo, Rui ; Zheng, Fuyin ; Liu, Hui ; Yu, Jianyong ; Shi, Xiangyang</creatorcontrib><description>•Incorporation of TCH-loaded HNTs improves the tensile strength of the nanofibrous mat.•Incorporation of TCH-loaded HNTs does not appreciably alter the mat morphology.•TCH/HNTs/PLGA composite nanofibers are cytocompatible.•TCH/HNTs/PLGA composite nanofibers are able to release TCH in a sustained manner.•TCH/HNTs/PLGA composite nanofibers display non-compromised antimicrobial activity. Fabrication of nanofiber-based drug delivery system with controlled release property is of general interest in biomedical sciences. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded halloysite nanotubes/poly(lactic-co-glycolic acid) composite nanofibers (TCH/HNTs/PLGA), and evaluated the drug release and antibacterial activity of this drug delivery system. The structure, morphology, and mechanical properties of the formed electrospun TCH/HNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. We show that the incorporation of TCH-loaded HNTs within the PLGA nanofibers is able to improve the tensile strength and maintain the three-dimensional structure of the nanofibrous mats. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the fibrous scaffolds demonstrate that the developed TCH/HNTs/PLGA composite nanofibers are cytocompatible. More importantly, the TCH/HNTs/PLGA composite nanofibers are able to release the antibacterial drug TCH in a sustained manner for 42 days and display antimicrobial activity solely associated with the encapsulated TCH drug. With the improved mechanical durability, sustained drug release profile, good cytocompatibility, and non-compromised therapeutic efficacy, the developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for tissue engineering and drug delivery applications.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2013.04.036</identifier><identifier>PMID: 23711785</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibacterial activity ; antibacterial properties ; Antiinfectives and antibacterials ; Cells, Cultured ; colloids ; Controlled release ; cultured cells ; Dose-Response Relationship, Drug ; Drug Delivery Systems ; Drugs ; durability ; Electrospinning ; Electrospun nanofibers ; encapsulation ; fibroblasts ; Fibroblasts - drug effects ; Fourier transform infrared spectroscopy ; halloysite ; Halloysite nanotubes ; Lactic Acid - chemistry ; Mice ; Microbial Sensitivity Tests ; Nanofibers ; Nanofibers - chemistry ; Nanostructure ; nanotubes ; Nanotubes - chemistry ; Particle Size ; Polyglycolic Acid - chemistry ; Porosity ; Scanning electron microscopy ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - growth &amp; development ; Structure-Activity Relationship ; Surface Properties ; tensile strength ; tetracycline ; Tetracycline - chemical synthesis ; Tetracycline - chemistry ; Tetracycline - pharmacology ; Tetracycline hydrochloride ; tissue engineering ; viability</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2013-10, Vol.110, p.148-155</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-6431442a7b151c131f0a5d68c6bc01c96b0db1cd2f82fdd20d7cda06896bb2463</citedby><cites>FETCH-LOGICAL-c458t-6431442a7b151c131f0a5d68c6bc01c96b0db1cd2f82fdd20d7cda06896bb2463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776513002944$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23711785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Ruiling</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Zheng, Fuyin</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Yu, Jianyong</creatorcontrib><creatorcontrib>Shi, Xiangyang</creatorcontrib><title>Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>•Incorporation of TCH-loaded HNTs improves the tensile strength of the nanofibrous mat.•Incorporation of TCH-loaded HNTs does not appreciably alter the mat morphology.•TCH/HNTs/PLGA composite nanofibers are cytocompatible.•TCH/HNTs/PLGA composite nanofibers are able to release TCH in a sustained manner.•TCH/HNTs/PLGA composite nanofibers display non-compromised antimicrobial activity. Fabrication of nanofiber-based drug delivery system with controlled release property is of general interest in biomedical sciences. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded halloysite nanotubes/poly(lactic-co-glycolic acid) composite nanofibers (TCH/HNTs/PLGA), and evaluated the drug release and antibacterial activity of this drug delivery system. The structure, morphology, and mechanical properties of the formed electrospun TCH/HNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. We show that the incorporation of TCH-loaded HNTs within the PLGA nanofibers is able to improve the tensile strength and maintain the three-dimensional structure of the nanofibrous mats. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the fibrous scaffolds demonstrate that the developed TCH/HNTs/PLGA composite nanofibers are cytocompatible. More importantly, the TCH/HNTs/PLGA composite nanofibers are able to release the antibacterial drug TCH in a sustained manner for 42 days and display antimicrobial activity solely associated with the encapsulated TCH drug. With the improved mechanical durability, sustained drug release profile, good cytocompatibility, and non-compromised therapeutic efficacy, the developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for tissue engineering and drug delivery applications.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial activity</subject><subject>antibacterial properties</subject><subject>Antiinfectives and antibacterials</subject><subject>Cells, Cultured</subject><subject>colloids</subject><subject>Controlled release</subject><subject>cultured cells</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Delivery Systems</subject><subject>Drugs</subject><subject>durability</subject><subject>Electrospinning</subject><subject>Electrospun nanofibers</subject><subject>encapsulation</subject><subject>fibroblasts</subject><subject>Fibroblasts - drug effects</subject><subject>Fourier transform infrared spectroscopy</subject><subject>halloysite</subject><subject>Halloysite nanotubes</subject><subject>Lactic Acid - chemistry</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Nanostructure</subject><subject>nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Particle Size</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Porosity</subject><subject>Scanning electron microscopy</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - growth &amp; development</subject><subject>Structure-Activity Relationship</subject><subject>Surface Properties</subject><subject>tensile strength</subject><subject>tetracycline</subject><subject>Tetracycline - chemical synthesis</subject><subject>Tetracycline - chemistry</subject><subject>Tetracycline - pharmacology</subject><subject>Tetracycline hydrochloride</subject><subject>tissue engineering</subject><subject>viability</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu3CAURVHVqpkk_YXUy3Rhh4cxeHatRmlSKVIXTdYIA04ZMcYFO5L_IR_dN3LSbbNAIL1zL0_3EnIBtAIK4mpfmRjynPquYhTqivKK1uId2UAr65LXQr4nG7plspRSNCfkNOc9pZRxkB_JCaslgGybDXnexWFKMQRni-SC09kVerB4Jt9pM7nkdSjw4Z_8tBSxXyc-Tt6UIWqLOpQZ9MjjPBS_dQhxyX5yV2MMy2U4Sk1pYvkYFlzZGzTz9kth4mGMR64Y9BB737mUz8mHXofsPr3cZ-Th-_X97ra8-3nzY_ftrjS8aadS8Bo4Z1p20ICBGnqqGytaIzpDwWxFR20HxrK-Zb21jFpprKaixUnHuKjPyOXqO6b4Z3Z5UgefjQtBDy7OWYFogLMtkm9AORNABX2DK4bOJDSiRVSsqMHYcnK9GpM_6LQooOrYr9qr137VsV9FucJ-UXjx8sfcHZz9J3stFIHPK9DrqPRj8lk9_EIHgeXXom0ZEl9XwmHCT94llY13g3HWJ-xR2ej_t8VfuBbGQA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Qi, Ruiling</creator><creator>Guo, Rui</creator><creator>Zheng, Fuyin</creator><creator>Liu, Hui</creator><creator>Yu, Jianyong</creator><creator>Shi, Xiangyang</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers</title><author>Qi, Ruiling ; Guo, Rui ; Zheng, Fuyin ; Liu, Hui ; Yu, Jianyong ; Shi, Xiangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-6431442a7b151c131f0a5d68c6bc01c96b0db1cd2f82fdd20d7cda06896bb2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial activity</topic><topic>antibacterial properties</topic><topic>Antiinfectives and antibacterials</topic><topic>Cells, Cultured</topic><topic>colloids</topic><topic>Controlled release</topic><topic>cultured cells</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Delivery Systems</topic><topic>Drugs</topic><topic>durability</topic><topic>Electrospinning</topic><topic>Electrospun nanofibers</topic><topic>encapsulation</topic><topic>fibroblasts</topic><topic>Fibroblasts - drug effects</topic><topic>Fourier transform infrared spectroscopy</topic><topic>halloysite</topic><topic>Halloysite nanotubes</topic><topic>Lactic Acid - chemistry</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Nanostructure</topic><topic>nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Particle Size</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Porosity</topic><topic>Scanning electron microscopy</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - growth &amp; development</topic><topic>Structure-Activity Relationship</topic><topic>Surface Properties</topic><topic>tensile strength</topic><topic>tetracycline</topic><topic>Tetracycline - chemical synthesis</topic><topic>Tetracycline - chemistry</topic><topic>Tetracycline - pharmacology</topic><topic>Tetracycline hydrochloride</topic><topic>tissue engineering</topic><topic>viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Ruiling</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Zheng, Fuyin</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Yu, Jianyong</creatorcontrib><creatorcontrib>Shi, Xiangyang</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Ruiling</au><au>Guo, Rui</au><au>Zheng, Fuyin</au><au>Liu, Hui</au><au>Yu, Jianyong</au><au>Shi, Xiangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>110</volume><spage>148</spage><epage>155</epage><pages>148-155</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>•Incorporation of TCH-loaded HNTs improves the tensile strength of the nanofibrous mat.•Incorporation of TCH-loaded HNTs does not appreciably alter the mat morphology.•TCH/HNTs/PLGA composite nanofibers are cytocompatible.•TCH/HNTs/PLGA composite nanofibers are able to release TCH in a sustained manner.•TCH/HNTs/PLGA composite nanofibers display non-compromised antimicrobial activity. Fabrication of nanofiber-based drug delivery system with controlled release property is of general interest in biomedical sciences. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded halloysite nanotubes/poly(lactic-co-glycolic acid) composite nanofibers (TCH/HNTs/PLGA), and evaluated the drug release and antibacterial activity of this drug delivery system. The structure, morphology, and mechanical properties of the formed electrospun TCH/HNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. We show that the incorporation of TCH-loaded HNTs within the PLGA nanofibers is able to improve the tensile strength and maintain the three-dimensional structure of the nanofibrous mats. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the fibrous scaffolds demonstrate that the developed TCH/HNTs/PLGA composite nanofibers are cytocompatible. More importantly, the TCH/HNTs/PLGA composite nanofibers are able to release the antibacterial drug TCH in a sustained manner for 42 days and display antimicrobial activity solely associated with the encapsulated TCH drug. With the improved mechanical durability, sustained drug release profile, good cytocompatibility, and non-compromised therapeutic efficacy, the developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for tissue engineering and drug delivery applications.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23711785</pmid><doi>10.1016/j.colsurfb.2013.04.036</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2013-10, Vol.110, p.148-155
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_1651429463
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibacterial activity
antibacterial properties
Antiinfectives and antibacterials
Cells, Cultured
colloids
Controlled release
cultured cells
Dose-Response Relationship, Drug
Drug Delivery Systems
Drugs
durability
Electrospinning
Electrospun nanofibers
encapsulation
fibroblasts
Fibroblasts - drug effects
Fourier transform infrared spectroscopy
halloysite
Halloysite nanotubes
Lactic Acid - chemistry
Mice
Microbial Sensitivity Tests
Nanofibers
Nanofibers - chemistry
Nanostructure
nanotubes
Nanotubes - chemistry
Particle Size
Polyglycolic Acid - chemistry
Porosity
Scanning electron microscopy
Staphylococcus aureus - drug effects
Staphylococcus aureus - growth & development
Structure-Activity Relationship
Surface Properties
tensile strength
tetracycline
Tetracycline - chemical synthesis
Tetracycline - chemistry
Tetracycline - pharmacology
Tetracycline hydrochloride
tissue engineering
viability
title Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20release%20and%20antibacterial%20activity%20of%20antibiotic-loaded%20electrospun%20halloysite/poly(lactic-co-glycolic%20acid)%20composite%20nanofibers&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Qi,%20Ruiling&rft.date=2013-10-01&rft.volume=110&rft.spage=148&rft.epage=155&rft.pages=148-155&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2013.04.036&rft_dat=%3Cproquest_cross%3E1371271568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1371271568&rft_id=info:pmid/23711785&rft_els_id=S0927776513002944&rfr_iscdi=true