Exponential synchronization of Markovian jumping complex dynamical networks with randomly occurring parameter uncertainties

This paper investigates the mean-square exponential synchronization problem of complex dynamical networks with Markovian jumping and randomly occurring parameter uncertainties. The considered Markovian transition rates are assumed to be partially unknown. The parameter uncertainties are considered t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2014-10, Vol.78 (1), p.15-27
Hauptverfasser: Zhou, Wuneng, Dai, Anding, Yang, Jun, Liu, Huashan, Liu, Xueliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 15
container_title Nonlinear dynamics
container_volume 78
creator Zhou, Wuneng
Dai, Anding
Yang, Jun
Liu, Huashan
Liu, Xueliang
description This paper investigates the mean-square exponential synchronization problem of complex dynamical networks with Markovian jumping and randomly occurring parameter uncertainties. The considered Markovian transition rates are assumed to be partially unknown. The parameter uncertainties are considered to be random occurrence and norm-bounded, and the randomly occurring parameter uncertainties obey certain Bernoulli-distributed white noise sequences. Based on the Lyapunov method and stochastic analysis, by designing mode-dependent feedback controller, some sufficient conditions are presented to ensure the mean-square exponential synchronization of Markovian jumping complex dynamical networks with partly unknown transition rates and randomly occurring parameter uncertainties. Numerical examples are given to demonstrate the validity of the theoretical results.
doi_str_mv 10.1007/s11071-014-1418-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651426748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651426748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-bbc717e0ad1f6e627a969c17fe8e17b1fee0e60c265073dec85c522aca2c08de3</originalsourceid><addsrcrecordid>eNp1kU1r20AQhpfSQB0nPyC3hV5yUTuz-ljpGEySBlx6acG3Zb0a1WtLu8quVNvJn4-MA4VCT3N5nneGeRm7QfiCAPJrRASJCWCWYIZlcvjAZpjLNBFFtfrIZlCJLIEKVp_YZYxbAEgFlDP2en_ovSM3WN3yeHRmE7yzL3qw3nHf8O867Pwfqx3fjl1v3W9ufNe3dOD10enOmklzNOx92EW-t8OGB-1q37VH7o0ZQzgpvQ66o4ECH52hMGg77aN4xS4a3Ua6fp9z9uvh_ufiW7L88fi0uFsmJs2qIVmvjURJoGtsCiqE1FVRGZQNlYRyjQ0RUAFGFDnItCZT5iYXQhstDJQ1pXN2e87tg38eKQ6qs9FQ22pHfowKixwzUcisnNDP_6BbPwY3XaeEyKtMpFjKicIzZYKPMVCj-mA7HY4KQZ3qUOc61FSHOtWhDpMjzk7sTz-h8Df5_9IbGaOSYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259423187</pqid></control><display><type>article</type><title>Exponential synchronization of Markovian jumping complex dynamical networks with randomly occurring parameter uncertainties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Wuneng ; Dai, Anding ; Yang, Jun ; Liu, Huashan ; Liu, Xueliang</creator><creatorcontrib>Zhou, Wuneng ; Dai, Anding ; Yang, Jun ; Liu, Huashan ; Liu, Xueliang</creatorcontrib><description>This paper investigates the mean-square exponential synchronization problem of complex dynamical networks with Markovian jumping and randomly occurring parameter uncertainties. The considered Markovian transition rates are assumed to be partially unknown. The parameter uncertainties are considered to be random occurrence and norm-bounded, and the randomly occurring parameter uncertainties obey certain Bernoulli-distributed white noise sequences. Based on the Lyapunov method and stochastic analysis, by designing mode-dependent feedback controller, some sufficient conditions are presented to ensure the mean-square exponential synchronization of Markovian jumping complex dynamical networks with partly unknown transition rates and randomly occurring parameter uncertainties. Numerical examples are given to demonstrate the validity of the theoretical results.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-014-1418-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Control systems ; Control systems design ; Dynamical Systems ; Engineering ; Feedback control ; Jumping ; Markov analysis ; Markov processes ; Mathematical models ; Mechanical Engineering ; Networks ; Original Paper ; Parameter uncertainty ; Synchronism ; Synchronization ; Transportation networks ; Uncertainty ; Vibration ; White noise</subject><ispartof>Nonlinear dynamics, 2014-10, Vol.78 (1), p.15-27</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-bbc717e0ad1f6e627a969c17fe8e17b1fee0e60c265073dec85c522aca2c08de3</citedby><cites>FETCH-LOGICAL-c349t-bbc717e0ad1f6e627a969c17fe8e17b1fee0e60c265073dec85c522aca2c08de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-014-1418-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-014-1418-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Zhou, Wuneng</creatorcontrib><creatorcontrib>Dai, Anding</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Liu, Huashan</creatorcontrib><creatorcontrib>Liu, Xueliang</creatorcontrib><title>Exponential synchronization of Markovian jumping complex dynamical networks with randomly occurring parameter uncertainties</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper investigates the mean-square exponential synchronization problem of complex dynamical networks with Markovian jumping and randomly occurring parameter uncertainties. The considered Markovian transition rates are assumed to be partially unknown. The parameter uncertainties are considered to be random occurrence and norm-bounded, and the randomly occurring parameter uncertainties obey certain Bernoulli-distributed white noise sequences. Based on the Lyapunov method and stochastic analysis, by designing mode-dependent feedback controller, some sufficient conditions are presented to ensure the mean-square exponential synchronization of Markovian jumping complex dynamical networks with partly unknown transition rates and randomly occurring parameter uncertainties. Numerical examples are given to demonstrate the validity of the theoretical results.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Jumping</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Parameter uncertainty</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Transportation networks</subject><subject>Uncertainty</subject><subject>Vibration</subject><subject>White noise</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1r20AQhpfSQB0nPyC3hV5yUTuz-ljpGEySBlx6acG3Zb0a1WtLu8quVNvJn4-MA4VCT3N5nneGeRm7QfiCAPJrRASJCWCWYIZlcvjAZpjLNBFFtfrIZlCJLIEKVp_YZYxbAEgFlDP2en_ovSM3WN3yeHRmE7yzL3qw3nHf8O867Pwfqx3fjl1v3W9ufNe3dOD10enOmklzNOx92EW-t8OGB-1q37VH7o0ZQzgpvQ66o4ECH52hMGg77aN4xS4a3Ua6fp9z9uvh_ufiW7L88fi0uFsmJs2qIVmvjURJoGtsCiqE1FVRGZQNlYRyjQ0RUAFGFDnItCZT5iYXQhstDJQ1pXN2e87tg38eKQ6qs9FQ22pHfowKixwzUcisnNDP_6BbPwY3XaeEyKtMpFjKicIzZYKPMVCj-mA7HY4KQZ3qUOc61FSHOtWhDpMjzk7sTz-h8Df5_9IbGaOSYQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Zhou, Wuneng</creator><creator>Dai, Anding</creator><creator>Yang, Jun</creator><creator>Liu, Huashan</creator><creator>Liu, Xueliang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Exponential synchronization of Markovian jumping complex dynamical networks with randomly occurring parameter uncertainties</title><author>Zhou, Wuneng ; Dai, Anding ; Yang, Jun ; Liu, Huashan ; Liu, Xueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-bbc717e0ad1f6e627a969c17fe8e17b1fee0e60c265073dec85c522aca2c08de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Jumping</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Parameter uncertainty</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Transportation networks</topic><topic>Uncertainty</topic><topic>Vibration</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wuneng</creatorcontrib><creatorcontrib>Dai, Anding</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Liu, Huashan</creatorcontrib><creatorcontrib>Liu, Xueliang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Wuneng</au><au>Dai, Anding</au><au>Yang, Jun</au><au>Liu, Huashan</au><au>Liu, Xueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential synchronization of Markovian jumping complex dynamical networks with randomly occurring parameter uncertainties</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>78</volume><issue>1</issue><spage>15</spage><epage>27</epage><pages>15-27</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper investigates the mean-square exponential synchronization problem of complex dynamical networks with Markovian jumping and randomly occurring parameter uncertainties. The considered Markovian transition rates are assumed to be partially unknown. The parameter uncertainties are considered to be random occurrence and norm-bounded, and the randomly occurring parameter uncertainties obey certain Bernoulli-distributed white noise sequences. Based on the Lyapunov method and stochastic analysis, by designing mode-dependent feedback controller, some sufficient conditions are presented to ensure the mean-square exponential synchronization of Markovian jumping complex dynamical networks with partly unknown transition rates and randomly occurring parameter uncertainties. Numerical examples are given to demonstrate the validity of the theoretical results.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-014-1418-x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2014-10, Vol.78 (1), p.15-27
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1651426748
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Control
Control systems
Control systems design
Dynamical Systems
Engineering
Feedback control
Jumping
Markov analysis
Markov processes
Mathematical models
Mechanical Engineering
Networks
Original Paper
Parameter uncertainty
Synchronism
Synchronization
Transportation networks
Uncertainty
Vibration
White noise
title Exponential synchronization of Markovian jumping complex dynamical networks with randomly occurring parameter uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20synchronization%20of%20Markovian%20jumping%20complex%20dynamical%20networks%20with%20randomly%20occurring%20parameter%20uncertainties&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhou,%20Wuneng&rft.date=2014-10-01&rft.volume=78&rft.issue=1&rft.spage=15&rft.epage=27&rft.pages=15-27&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-014-1418-x&rft_dat=%3Cproquest_cross%3E1651426748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259423187&rft_id=info:pmid/&rfr_iscdi=true