Site-specific catalytic activity in exfoliated MoS sub(2) single-layer polytypes for hydrogen evolution: basal plane and edges

We performed ab initiocalculations on the basic set of MoS sub(2) single-layer materials, namely the 1H, 1T and 1T' polytypes, to lay a theoretical framework on the emerging breakthrough-discoveries of high activity towards the hydrogen evolution reaction (HER) in exfoliated MoS sub(2) and rela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-11, Vol.2 (48), p.20545-20551
Hauptverfasser: Fan, Xiao-Li, Yang, Yi, Xiao, Pin, Lau, Woon-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20551
container_issue 48
container_start_page 20545
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 2
creator Fan, Xiao-Li
Yang, Yi
Xiao, Pin
Lau, Woon-Ming
description We performed ab initiocalculations on the basic set of MoS sub(2) single-layer materials, namely the 1H, 1T and 1T' polytypes, to lay a theoretical framework on the emerging breakthrough-discoveries of high activity towards the hydrogen evolution reaction (HER) in exfoliated MoS sub(2) and related materials. Our calculations show that for exfoliated MoS sub(2), 1T' is the most HER active polytype, with active sites both on the basal plane and at the edges of the layered grains. In comparison, the basal planes of the 1H and 1T polytypes are HER inactive and their edge-sites are not as active as those of the 1T' polytype. We also found that 1T-MoS sub(2) is unstable and easily transforms into 1T'-MoS sub(2), and the 1T' phase is metastable with a considerable barrier >0.7 eV to bar its transformation into the most stable 1H phase. Further, unlike the case of exfoliated WS sub(2), the HER activity of exfoliated MoS sub(2) is not so critically affected by the lattice strain. In addition, in contrast to the 1T'-WS sub(2), the 1T'-MoS sub(2) is not metallic but has a very small bandgap of 0.1-0.2 eV. Hence, 1T'-MoS sub(2) should have a high enough conductivity and other suitable properties for it to function as an electrochemical HER catalyst.
doi_str_mv 10.1039/c4ta05257a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651425262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651425262</sourcerecordid><originalsourceid>FETCH-LOGICAL-p662-9e4118d3aebf4172a1dbe0ee789cc618b5e0000b8d34705e23d53d988e7c085f3</originalsourceid><addsrcrecordid>eNqNT71OwzAYtBBIVNCFJ_BYhoDt2I7Nhir-pCKGdq8c-0sxMnGInYosPDupQMzccjfcne4QuqDkipJSX1ueDRFMVOYIzRgRpKi4lsd_WqlTNE_pjUxQhEitZ-hr7TMUqQPrG2-xNdmEMU_K2Oz3Po_Ytxg-mxi8yeDwc1zjNNQLdomTb3cBimBG6HEXp9jYQcJN7PHr6Pq4gym5j2HIPrY3uDbJBNwF0wI2rcPgdpDO0UljQoL5L5-hzf3dZvlYrF4enpa3q6KTkhUaOKXKlQbqhtOKGepqIACV0tZKqmoBh0_1ZOEVEcBKJ0qnlYLKEiWa8gwtfmq7Pn4MkPL23ScL4TAmDmlLpaCcCSbZP6ycSaopI-U31XJxgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642619120</pqid></control><display><type>article</type><title>Site-specific catalytic activity in exfoliated MoS sub(2) single-layer polytypes for hydrogen evolution: basal plane and edges</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Fan, Xiao-Li ; Yang, Yi ; Xiao, Pin ; Lau, Woon-Ming</creator><creatorcontrib>Fan, Xiao-Li ; Yang, Yi ; Xiao, Pin ; Lau, Woon-Ming</creatorcontrib><description>We performed ab initiocalculations on the basic set of MoS sub(2) single-layer materials, namely the 1H, 1T and 1T' polytypes, to lay a theoretical framework on the emerging breakthrough-discoveries of high activity towards the hydrogen evolution reaction (HER) in exfoliated MoS sub(2) and related materials. Our calculations show that for exfoliated MoS sub(2), 1T' is the most HER active polytype, with active sites both on the basal plane and at the edges of the layered grains. In comparison, the basal planes of the 1H and 1T polytypes are HER inactive and their edge-sites are not as active as those of the 1T' polytype. We also found that 1T-MoS sub(2) is unstable and easily transforms into 1T'-MoS sub(2), and the 1T' phase is metastable with a considerable barrier &gt;0.7 eV to bar its transformation into the most stable 1H phase. Further, unlike the case of exfoliated WS sub(2), the HER activity of exfoliated MoS sub(2) is not so critically affected by the lattice strain. In addition, in contrast to the 1T'-WS sub(2), the 1T'-MoS sub(2) is not metallic but has a very small bandgap of 0.1-0.2 eV. Hence, 1T'-MoS sub(2) should have a high enough conductivity and other suitable properties for it to function as an electrochemical HER catalyst.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c4ta05257a</identifier><language>eng</language><subject>Basal plane ; Exfoliation ; Hydrogen evolution ; Molybdenum disulfide ; Phase transformations ; Polytypes ; Sustainability ; Transformations</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2014-11, Vol.2 (48), p.20545-20551</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fan, Xiao-Li</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Xiao, Pin</creatorcontrib><creatorcontrib>Lau, Woon-Ming</creatorcontrib><title>Site-specific catalytic activity in exfoliated MoS sub(2) single-layer polytypes for hydrogen evolution: basal plane and edges</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>We performed ab initiocalculations on the basic set of MoS sub(2) single-layer materials, namely the 1H, 1T and 1T' polytypes, to lay a theoretical framework on the emerging breakthrough-discoveries of high activity towards the hydrogen evolution reaction (HER) in exfoliated MoS sub(2) and related materials. Our calculations show that for exfoliated MoS sub(2), 1T' is the most HER active polytype, with active sites both on the basal plane and at the edges of the layered grains. In comparison, the basal planes of the 1H and 1T polytypes are HER inactive and their edge-sites are not as active as those of the 1T' polytype. We also found that 1T-MoS sub(2) is unstable and easily transforms into 1T'-MoS sub(2), and the 1T' phase is metastable with a considerable barrier &gt;0.7 eV to bar its transformation into the most stable 1H phase. Further, unlike the case of exfoliated WS sub(2), the HER activity of exfoliated MoS sub(2) is not so critically affected by the lattice strain. In addition, in contrast to the 1T'-WS sub(2), the 1T'-MoS sub(2) is not metallic but has a very small bandgap of 0.1-0.2 eV. Hence, 1T'-MoS sub(2) should have a high enough conductivity and other suitable properties for it to function as an electrochemical HER catalyst.</description><subject>Basal plane</subject><subject>Exfoliation</subject><subject>Hydrogen evolution</subject><subject>Molybdenum disulfide</subject><subject>Phase transformations</subject><subject>Polytypes</subject><subject>Sustainability</subject><subject>Transformations</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNT71OwzAYtBBIVNCFJ_BYhoDt2I7Nhir-pCKGdq8c-0sxMnGInYosPDupQMzccjfcne4QuqDkipJSX1ueDRFMVOYIzRgRpKi4lsd_WqlTNE_pjUxQhEitZ-hr7TMUqQPrG2-xNdmEMU_K2Oz3Po_Ytxg-mxi8yeDwc1zjNNQLdomTb3cBimBG6HEXp9jYQcJN7PHr6Pq4gym5j2HIPrY3uDbJBNwF0wI2rcPgdpDO0UljQoL5L5-hzf3dZvlYrF4enpa3q6KTkhUaOKXKlQbqhtOKGepqIACV0tZKqmoBh0_1ZOEVEcBKJ0qnlYLKEiWa8gwtfmq7Pn4MkPL23ScL4TAmDmlLpaCcCSbZP6ycSaopI-U31XJxgw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Fan, Xiao-Li</creator><creator>Yang, Yi</creator><creator>Xiao, Pin</creator><creator>Lau, Woon-Ming</creator><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Site-specific catalytic activity in exfoliated MoS sub(2) single-layer polytypes for hydrogen evolution: basal plane and edges</title><author>Fan, Xiao-Li ; Yang, Yi ; Xiao, Pin ; Lau, Woon-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p662-9e4118d3aebf4172a1dbe0ee789cc618b5e0000b8d34705e23d53d988e7c085f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Basal plane</topic><topic>Exfoliation</topic><topic>Hydrogen evolution</topic><topic>Molybdenum disulfide</topic><topic>Phase transformations</topic><topic>Polytypes</topic><topic>Sustainability</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiao-Li</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Xiao, Pin</creatorcontrib><creatorcontrib>Lau, Woon-Ming</creatorcontrib><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiao-Li</au><au>Yang, Yi</au><au>Xiao, Pin</au><au>Lau, Woon-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific catalytic activity in exfoliated MoS sub(2) single-layer polytypes for hydrogen evolution: basal plane and edges</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>2</volume><issue>48</issue><spage>20545</spage><epage>20551</epage><pages>20545-20551</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>We performed ab initiocalculations on the basic set of MoS sub(2) single-layer materials, namely the 1H, 1T and 1T' polytypes, to lay a theoretical framework on the emerging breakthrough-discoveries of high activity towards the hydrogen evolution reaction (HER) in exfoliated MoS sub(2) and related materials. Our calculations show that for exfoliated MoS sub(2), 1T' is the most HER active polytype, with active sites both on the basal plane and at the edges of the layered grains. In comparison, the basal planes of the 1H and 1T polytypes are HER inactive and their edge-sites are not as active as those of the 1T' polytype. We also found that 1T-MoS sub(2) is unstable and easily transforms into 1T'-MoS sub(2), and the 1T' phase is metastable with a considerable barrier &gt;0.7 eV to bar its transformation into the most stable 1H phase. Further, unlike the case of exfoliated WS sub(2), the HER activity of exfoliated MoS sub(2) is not so critically affected by the lattice strain. In addition, in contrast to the 1T'-WS sub(2), the 1T'-MoS sub(2) is not metallic but has a very small bandgap of 0.1-0.2 eV. Hence, 1T'-MoS sub(2) should have a high enough conductivity and other suitable properties for it to function as an electrochemical HER catalyst.</abstract><doi>10.1039/c4ta05257a</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2014-11, Vol.2 (48), p.20545-20551
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1651425262
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Basal plane
Exfoliation
Hydrogen evolution
Molybdenum disulfide
Phase transformations
Polytypes
Sustainability
Transformations
title Site-specific catalytic activity in exfoliated MoS sub(2) single-layer polytypes for hydrogen evolution: basal plane and edges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20catalytic%20activity%20in%20exfoliated%20MoS%20sub(2)%20single-layer%20polytypes%20for%20hydrogen%20evolution:%20basal%20plane%20and%20edges&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Fan,%20Xiao-Li&rft.date=2014-11-01&rft.volume=2&rft.issue=48&rft.spage=20545&rft.epage=20551&rft.pages=20545-20551&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c4ta05257a&rft_dat=%3Cproquest%3E1651425262%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642619120&rft_id=info:pmid/&rfr_iscdi=true