First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes
Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. Th...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2015-01, Vol.81, p.179-192 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | |
container_start_page | 179 |
container_title | Carbon (New York) |
container_volume | 81 |
creator | Laref, A. Ahmed, A. Bin-Omran, S. Luo, S.J. |
description | Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. The valuable features such as, the band structure, density of states, and optical absorption are computed to explore the role of substitution by B and N atoms in graphene systems. Interestingly, the band structure calculations illustrate that the substitution of B atoms in graphene monolayers shifts the Dirac point upward to the Femi level; the substitution of N atoms has an opposite effect. Upon the doping with nitrogen or boron, n-type or p-type semiconducting would be obtained. Our results are in consensus with the available previous theoretical and experimental determinations. The optical absorption spectra are found to vary dramatically with doping concentration and the supercell size of graphene. Importantly, it is plausible to tailor the electronic properties of doped graphene sheets and attain reasonable results for various electronic nanodevice applications. This characteristic is due to the exceptional electronic structure and unique properties of two-dimensional graphene. |
doi_str_mv | 10.1016/j.carbon.2014.09.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651422536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622314008999</els_id><sourcerecordid>1651422536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-29e6d7ab32b39bc3ccdf9a0b0a2b2029531fe362af72e6c1bb24843468b453793</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw-5CF5a87VpcxFE_ALBi55Dkk7dLN2kJlXYf2_WLh49hWGeybzzIHRBSU0Jldfr2plkY6gZoaImqiaiOUAL2ja84q2ih2hBCGkryRg_Ric5r0spWioWaPvgU56qMfng_DgANsEM2-wzjj2eVoBhADelGLwrrQ7HcfLODHhMcYQ0efgFbSzEbz_4An9AwF3pd3jOhTcxxGowW0j4I5lxBQHyGTrqzZDhfP-eoveH-7e7p-rl9fH57valcoKrqWIKZNcYy5nlyjruXNcrQywxzDLC1JLTHrhkpm8YSEetZaIVXMjWiiVvFD9FV_O_JfLnF-RJb3x2MAwmQPzKmsolFYwtuSyomFGXYs4Jel28bEzaakr0zrRe6_kivTOtidLFdBm73G8wubjpkyku898saxVrJd8luZk5KOd-e0g6Ow_BQedTkay76P9f9AOAFpg6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651422536</pqid></control><display><type>article</type><title>First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Laref, A. ; Ahmed, A. ; Bin-Omran, S. ; Luo, S.J.</creator><creatorcontrib>Laref, A. ; Ahmed, A. ; Bin-Omran, S. ; Luo, S.J.</creatorcontrib><description>Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. The valuable features such as, the band structure, density of states, and optical absorption are computed to explore the role of substitution by B and N atoms in graphene systems. Interestingly, the band structure calculations illustrate that the substitution of B atoms in graphene monolayers shifts the Dirac point upward to the Femi level; the substitution of N atoms has an opposite effect. Upon the doping with nitrogen or boron, n-type or p-type semiconducting would be obtained. Our results are in consensus with the available previous theoretical and experimental determinations. The optical absorption spectra are found to vary dramatically with doping concentration and the supercell size of graphene. Importantly, it is plausible to tailor the electronic properties of doped graphene sheets and attain reasonable results for various electronic nanodevice applications. This characteristic is due to the exceptional electronic structure and unique properties of two-dimensional graphene.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2014.09.047</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atomic structure ; Band structure of solids ; Boron ; Carbon ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Doping ; Electronics ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Materials science ; Mathematical analysis ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; Specific materials</subject><ispartof>Carbon (New York), 2015-01, Vol.81, p.179-192</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-29e6d7ab32b39bc3ccdf9a0b0a2b2029531fe362af72e6c1bb24843468b453793</citedby><cites>FETCH-LOGICAL-c439t-29e6d7ab32b39bc3ccdf9a0b0a2b2029531fe362af72e6c1bb24843468b453793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2014.09.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28928639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Laref, A.</creatorcontrib><creatorcontrib>Ahmed, A.</creatorcontrib><creatorcontrib>Bin-Omran, S.</creatorcontrib><creatorcontrib>Luo, S.J.</creatorcontrib><title>First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes</title><title>Carbon (New York)</title><description>Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. The valuable features such as, the band structure, density of states, and optical absorption are computed to explore the role of substitution by B and N atoms in graphene systems. Interestingly, the band structure calculations illustrate that the substitution of B atoms in graphene monolayers shifts the Dirac point upward to the Femi level; the substitution of N atoms has an opposite effect. Upon the doping with nitrogen or boron, n-type or p-type semiconducting would be obtained. Our results are in consensus with the available previous theoretical and experimental determinations. The optical absorption spectra are found to vary dramatically with doping concentration and the supercell size of graphene. Importantly, it is plausible to tailor the electronic properties of doped graphene sheets and attain reasonable results for various electronic nanodevice applications. This characteristic is due to the exceptional electronic structure and unique properties of two-dimensional graphene.</description><subject>Atomic structure</subject><subject>Band structure of solids</subject><subject>Boron</subject><subject>Carbon</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Doping</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>Specific materials</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw-5CF5a87VpcxFE_ALBi55Dkk7dLN2kJlXYf2_WLh49hWGeybzzIHRBSU0Jldfr2plkY6gZoaImqiaiOUAL2ja84q2ih2hBCGkryRg_Ric5r0spWioWaPvgU56qMfng_DgANsEM2-wzjj2eVoBhADelGLwrrQ7HcfLODHhMcYQ0efgFbSzEbz_4An9AwF3pd3jOhTcxxGowW0j4I5lxBQHyGTrqzZDhfP-eoveH-7e7p-rl9fH57valcoKrqWIKZNcYy5nlyjruXNcrQywxzDLC1JLTHrhkpm8YSEetZaIVXMjWiiVvFD9FV_O_JfLnF-RJb3x2MAwmQPzKmsolFYwtuSyomFGXYs4Jel28bEzaakr0zrRe6_kivTOtidLFdBm73G8wubjpkyku898saxVrJd8luZk5KOd-e0g6Ow_BQedTkay76P9f9AOAFpg6</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Laref, A.</creator><creator>Ahmed, A.</creator><creator>Bin-Omran, S.</creator><creator>Luo, S.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes</title><author>Laref, A. ; Ahmed, A. ; Bin-Omran, S. ; Luo, S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-29e6d7ab32b39bc3ccdf9a0b0a2b2029531fe362af72e6c1bb24843468b453793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic structure</topic><topic>Band structure of solids</topic><topic>Boron</topic><topic>Carbon</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Doping</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laref, A.</creatorcontrib><creatorcontrib>Ahmed, A.</creatorcontrib><creatorcontrib>Bin-Omran, S.</creatorcontrib><creatorcontrib>Luo, S.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laref, A.</au><au>Ahmed, A.</au><au>Bin-Omran, S.</au><au>Luo, S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes</atitle><jtitle>Carbon (New York)</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>81</volume><spage>179</spage><epage>192</epage><pages>179-192</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. The valuable features such as, the band structure, density of states, and optical absorption are computed to explore the role of substitution by B and N atoms in graphene systems. Interestingly, the band structure calculations illustrate that the substitution of B atoms in graphene monolayers shifts the Dirac point upward to the Femi level; the substitution of N atoms has an opposite effect. Upon the doping with nitrogen or boron, n-type or p-type semiconducting would be obtained. Our results are in consensus with the available previous theoretical and experimental determinations. The optical absorption spectra are found to vary dramatically with doping concentration and the supercell size of graphene. Importantly, it is plausible to tailor the electronic properties of doped graphene sheets and attain reasonable results for various electronic nanodevice applications. This characteristic is due to the exceptional electronic structure and unique properties of two-dimensional graphene.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2014.09.047</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2015-01, Vol.81, p.179-192 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651422536 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Atomic structure Band structure of solids Boron Carbon Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Doping Electronics Exact sciences and technology Fullerenes and related materials diamonds, graphite Graphene Materials science Mathematical analysis Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Physics Specific materials |
title | First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principle%20analysis%20of%20the%20electronic%20and%20optical%20properties%20of%20boron%20and%20nitrogen%20doped%20carbon%20mono-layer%20graphenes&rft.jtitle=Carbon%20(New%20York)&rft.au=Laref,%20A.&rft.date=2015-01-01&rft.volume=81&rft.spage=179&rft.epage=192&rft.pages=179-192&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2014.09.047&rft_dat=%3Cproquest_cross%3E1651422536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651422536&rft_id=info:pmid/&rft_els_id=S0008622314008999&rfr_iscdi=true |