First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes

Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2015-01, Vol.81, p.179-192
Hauptverfasser: Laref, A., Ahmed, A., Bin-Omran, S., Luo, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue
container_start_page 179
container_title Carbon (New York)
container_volume 81
creator Laref, A.
Ahmed, A.
Bin-Omran, S.
Luo, S.J.
description Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. The valuable features such as, the band structure, density of states, and optical absorption are computed to explore the role of substitution by B and N atoms in graphene systems. Interestingly, the band structure calculations illustrate that the substitution of B atoms in graphene monolayers shifts the Dirac point upward to the Femi level; the substitution of N atoms has an opposite effect. Upon the doping with nitrogen or boron, n-type or p-type semiconducting would be obtained. Our results are in consensus with the available previous theoretical and experimental determinations. The optical absorption spectra are found to vary dramatically with doping concentration and the supercell size of graphene. Importantly, it is plausible to tailor the electronic properties of doped graphene sheets and attain reasonable results for various electronic nanodevice applications. This characteristic is due to the exceptional electronic structure and unique properties of two-dimensional graphene.
doi_str_mv 10.1016/j.carbon.2014.09.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651422536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622314008999</els_id><sourcerecordid>1651422536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-29e6d7ab32b39bc3ccdf9a0b0a2b2029531fe362af72e6c1bb24843468b453793</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw-5CF5a87VpcxFE_ALBi55Dkk7dLN2kJlXYf2_WLh49hWGeybzzIHRBSU0Jldfr2plkY6gZoaImqiaiOUAL2ja84q2ih2hBCGkryRg_Ric5r0spWioWaPvgU56qMfng_DgANsEM2-wzjj2eVoBhADelGLwrrQ7HcfLODHhMcYQ0efgFbSzEbz_4An9AwF3pd3jOhTcxxGowW0j4I5lxBQHyGTrqzZDhfP-eoveH-7e7p-rl9fH57valcoKrqWIKZNcYy5nlyjruXNcrQywxzDLC1JLTHrhkpm8YSEetZaIVXMjWiiVvFD9FV_O_JfLnF-RJb3x2MAwmQPzKmsolFYwtuSyomFGXYs4Jel28bEzaakr0zrRe6_kivTOtidLFdBm73G8wubjpkyku898saxVrJd8luZk5KOd-e0g6Ow_BQedTkay76P9f9AOAFpg6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651422536</pqid></control><display><type>article</type><title>First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Laref, A. ; Ahmed, A. ; Bin-Omran, S. ; Luo, S.J.</creator><creatorcontrib>Laref, A. ; Ahmed, A. ; Bin-Omran, S. ; Luo, S.J.</creatorcontrib><description>Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. The valuable features such as, the band structure, density of states, and optical absorption are computed to explore the role of substitution by B and N atoms in graphene systems. Interestingly, the band structure calculations illustrate that the substitution of B atoms in graphene monolayers shifts the Dirac point upward to the Femi level; the substitution of N atoms has an opposite effect. Upon the doping with nitrogen or boron, n-type or p-type semiconducting would be obtained. Our results are in consensus with the available previous theoretical and experimental determinations. The optical absorption spectra are found to vary dramatically with doping concentration and the supercell size of graphene. Importantly, it is plausible to tailor the electronic properties of doped graphene sheets and attain reasonable results for various electronic nanodevice applications. This characteristic is due to the exceptional electronic structure and unique properties of two-dimensional graphene.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2014.09.047</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atomic structure ; Band structure of solids ; Boron ; Carbon ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Doping ; Electronics ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Materials science ; Mathematical analysis ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; Specific materials</subject><ispartof>Carbon (New York), 2015-01, Vol.81, p.179-192</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-29e6d7ab32b39bc3ccdf9a0b0a2b2029531fe362af72e6c1bb24843468b453793</citedby><cites>FETCH-LOGICAL-c439t-29e6d7ab32b39bc3ccdf9a0b0a2b2029531fe362af72e6c1bb24843468b453793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2014.09.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28928639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Laref, A.</creatorcontrib><creatorcontrib>Ahmed, A.</creatorcontrib><creatorcontrib>Bin-Omran, S.</creatorcontrib><creatorcontrib>Luo, S.J.</creatorcontrib><title>First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes</title><title>Carbon (New York)</title><description>Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. The valuable features such as, the band structure, density of states, and optical absorption are computed to explore the role of substitution by B and N atoms in graphene systems. Interestingly, the band structure calculations illustrate that the substitution of B atoms in graphene monolayers shifts the Dirac point upward to the Femi level; the substitution of N atoms has an opposite effect. Upon the doping with nitrogen or boron, n-type or p-type semiconducting would be obtained. Our results are in consensus with the available previous theoretical and experimental determinations. The optical absorption spectra are found to vary dramatically with doping concentration and the supercell size of graphene. Importantly, it is plausible to tailor the electronic properties of doped graphene sheets and attain reasonable results for various electronic nanodevice applications. This characteristic is due to the exceptional electronic structure and unique properties of two-dimensional graphene.</description><subject>Atomic structure</subject><subject>Band structure of solids</subject><subject>Boron</subject><subject>Carbon</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Doping</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>Specific materials</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw-5CF5a87VpcxFE_ALBi55Dkk7dLN2kJlXYf2_WLh49hWGeybzzIHRBSU0Jldfr2plkY6gZoaImqiaiOUAL2ja84q2ih2hBCGkryRg_Ric5r0spWioWaPvgU56qMfng_DgANsEM2-wzjj2eVoBhADelGLwrrQ7HcfLODHhMcYQ0efgFbSzEbz_4An9AwF3pd3jOhTcxxGowW0j4I5lxBQHyGTrqzZDhfP-eoveH-7e7p-rl9fH57valcoKrqWIKZNcYy5nlyjruXNcrQywxzDLC1JLTHrhkpm8YSEetZaIVXMjWiiVvFD9FV_O_JfLnF-RJb3x2MAwmQPzKmsolFYwtuSyomFGXYs4Jel28bEzaakr0zrRe6_kivTOtidLFdBm73G8wubjpkyku898saxVrJd8luZk5KOd-e0g6Ow_BQedTkay76P9f9AOAFpg6</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Laref, A.</creator><creator>Ahmed, A.</creator><creator>Bin-Omran, S.</creator><creator>Luo, S.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes</title><author>Laref, A. ; Ahmed, A. ; Bin-Omran, S. ; Luo, S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-29e6d7ab32b39bc3ccdf9a0b0a2b2029531fe362af72e6c1bb24843468b453793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic structure</topic><topic>Band structure of solids</topic><topic>Boron</topic><topic>Carbon</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Doping</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laref, A.</creatorcontrib><creatorcontrib>Ahmed, A.</creatorcontrib><creatorcontrib>Bin-Omran, S.</creatorcontrib><creatorcontrib>Luo, S.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laref, A.</au><au>Ahmed, A.</au><au>Bin-Omran, S.</au><au>Luo, S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes</atitle><jtitle>Carbon (New York)</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>81</volume><spage>179</spage><epage>192</epage><pages>179-192</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>Based on first-principles calculations, we explored the electronic and optical characteristics of undoped and doped graphene sheets with boron (B) and nitrogen (N) atoms. We carried out our calculations with a full-potential linearized augmented plane wave scheme based on density function theory. The valuable features such as, the band structure, density of states, and optical absorption are computed to explore the role of substitution by B and N atoms in graphene systems. Interestingly, the band structure calculations illustrate that the substitution of B atoms in graphene monolayers shifts the Dirac point upward to the Femi level; the substitution of N atoms has an opposite effect. Upon the doping with nitrogen or boron, n-type or p-type semiconducting would be obtained. Our results are in consensus with the available previous theoretical and experimental determinations. The optical absorption spectra are found to vary dramatically with doping concentration and the supercell size of graphene. Importantly, it is plausible to tailor the electronic properties of doped graphene sheets and attain reasonable results for various electronic nanodevice applications. This characteristic is due to the exceptional electronic structure and unique properties of two-dimensional graphene.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2014.09.047</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2015-01, Vol.81, p.179-192
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_1651422536
source Elsevier ScienceDirect Journals Complete
subjects Atomic structure
Band structure of solids
Boron
Carbon
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Doping
Electronics
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphene
Materials science
Mathematical analysis
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Physics
Specific materials
title First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principle%20analysis%20of%20the%20electronic%20and%20optical%20properties%20of%20boron%20and%20nitrogen%20doped%20carbon%20mono-layer%20graphenes&rft.jtitle=Carbon%20(New%20York)&rft.au=Laref,%20A.&rft.date=2015-01-01&rft.volume=81&rft.spage=179&rft.epage=192&rft.pages=179-192&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2014.09.047&rft_dat=%3Cproquest_cross%3E1651422536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651422536&rft_id=info:pmid/&rft_els_id=S0008622314008999&rfr_iscdi=true