Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering

This study presents the physicochemical characterization of the pluronic surfactant-assisted size control of hydroxyapatite (HAp) nanorods for bone tissue engineering (BTE). Rod-shaped HAp nanoparticles were synthesized via a simple route by hydrothermal treatment and with the assistance of the trib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2014-04, Vol.116, p.666-673
Hauptverfasser: Nga, Nguyen Kim, Giang, Luu Truong, Huy, Tran Quang, Viet, Pham Hung, Migliaresi, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue
container_start_page 666
container_title Colloids and surfaces, B, Biointerfaces
container_volume 116
creator Nga, Nguyen Kim
Giang, Luu Truong
Huy, Tran Quang
Viet, Pham Hung
Migliaresi, Claudio
description This study presents the physicochemical characterization of the pluronic surfactant-assisted size control of hydroxyapatite (HAp) nanorods for bone tissue engineering (BTE). Rod-shaped HAp nanoparticles were synthesized via a simple route by hydrothermal treatment and with the assistance of the triblock co-polymer PEO20-PPO70-PEO20 (P123). The films of poly (d, l) lactic acid (PDLLA) were prepared as a substrate to spread synthesized HAp nanorods. Powder X-ray diffraction (XRD), field electron scanning microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherms, and energy-dispersive X-ray spectroscopy were used to characterize the structure and composition of the HAp samples. Results showed that regular rod-shaped HAp nanoparticles (with a mean length of 120 nm and a mean width of 28 nm) were successfully produced. Moreover, synthesized HAp nanorods revealed the rapid formation of bone-like apatite with a distinctive morphology, similar to flower-like apatite; the formation was observed as early as 7 days after incubation in stimulated body fluids. This study is a positive addition to the ongoing research on the preparation of HAp nanostructures toward the development of biocompatible composite scaffolds for BTE applications.
doi_str_mv 10.1016/j.colsurfb.2013.11.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651422478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518243611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-8a0d45a5944f20e0a94fd63099eb709e59899db17dfefaa1e93c334623f401c63</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOj7-gmTppjU3SZtmKeILBBcqLkPa3miHTjImKTj-eis-trq6m--cA_cj5BhYCQzq02XZhTFN0bUlZyBKgJIx2CILaJQopKjVNlkwzVWhVF3tkf2UlowxLkHtkj0uuZJaNAvydD932C5bnwub0pAy9jQN70i74HMMIw2Ovmz6GN42dm3zkJF660MMfaIuRNoGjzQPKU1I0T8PHjEO_vmQ7Dg7Jjz6vgfk8fLi4fy6uL27ujk_uy06oVQuGst6WdlKS-k4Q2a1dH0tmNbYKqax0o3WfQuqd-isBdSiE0LWXDjJoKvFATn56l3H8DphymY1pA7H0XoMUzJQVyA5l6r5Byq0bpSs5N9oBQ2fnwwwo_UX2sWQUkRn1nFY2bgxwMynKrM0P6rMpyoDYGZVc_D4e2NqV9j_xn7ciA8DPJMG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518243611</pqid></control><display><type>article</type><title>Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Nga, Nguyen Kim ; Giang, Luu Truong ; Huy, Tran Quang ; Viet, Pham Hung ; Migliaresi, Claudio</creator><creatorcontrib>Nga, Nguyen Kim ; Giang, Luu Truong ; Huy, Tran Quang ; Viet, Pham Hung ; Migliaresi, Claudio</creatorcontrib><description>This study presents the physicochemical characterization of the pluronic surfactant-assisted size control of hydroxyapatite (HAp) nanorods for bone tissue engineering (BTE). Rod-shaped HAp nanoparticles were synthesized via a simple route by hydrothermal treatment and with the assistance of the triblock co-polymer PEO20-PPO70-PEO20 (P123). The films of poly (d, l) lactic acid (PDLLA) were prepared as a substrate to spread synthesized HAp nanorods. Powder X-ray diffraction (XRD), field electron scanning microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherms, and energy-dispersive X-ray spectroscopy were used to characterize the structure and composition of the HAp samples. Results showed that regular rod-shaped HAp nanoparticles (with a mean length of 120 nm and a mean width of 28 nm) were successfully produced. Moreover, synthesized HAp nanorods revealed the rapid formation of bone-like apatite with a distinctive morphology, similar to flower-like apatite; the formation was observed as early as 7 days after incubation in stimulated body fluids. This study is a positive addition to the ongoing research on the preparation of HAp nanostructures toward the development of biocompatible composite scaffolds for BTE applications.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2013.11.001</identifier><identifier>PMID: 24274938</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Apatite ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biomedical materials ; Bone Regeneration ; Bones ; Durapatite - chemical synthesis ; Durapatite - chemistry ; Humans ; Hydroxyapatite ; Nanorods ; Nanotubes - chemistry ; Particle Size ; Surface Properties ; Surface-Active Agents - chemistry ; Surgical implants ; Tissue Engineering ; X-rays</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2014-04, Vol.116, p.666-673</ispartof><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-8a0d45a5944f20e0a94fd63099eb709e59899db17dfefaa1e93c334623f401c63</citedby><cites>FETCH-LOGICAL-c377t-8a0d45a5944f20e0a94fd63099eb709e59899db17dfefaa1e93c334623f401c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24274938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nga, Nguyen Kim</creatorcontrib><creatorcontrib>Giang, Luu Truong</creatorcontrib><creatorcontrib>Huy, Tran Quang</creatorcontrib><creatorcontrib>Viet, Pham Hung</creatorcontrib><creatorcontrib>Migliaresi, Claudio</creatorcontrib><title>Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>This study presents the physicochemical characterization of the pluronic surfactant-assisted size control of hydroxyapatite (HAp) nanorods for bone tissue engineering (BTE). Rod-shaped HAp nanoparticles were synthesized via a simple route by hydrothermal treatment and with the assistance of the triblock co-polymer PEO20-PPO70-PEO20 (P123). The films of poly (d, l) lactic acid (PDLLA) were prepared as a substrate to spread synthesized HAp nanorods. Powder X-ray diffraction (XRD), field electron scanning microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherms, and energy-dispersive X-ray spectroscopy were used to characterize the structure and composition of the HAp samples. Results showed that regular rod-shaped HAp nanoparticles (with a mean length of 120 nm and a mean width of 28 nm) were successfully produced. Moreover, synthesized HAp nanorods revealed the rapid formation of bone-like apatite with a distinctive morphology, similar to flower-like apatite; the formation was observed as early as 7 days after incubation in stimulated body fluids. This study is a positive addition to the ongoing research on the preparation of HAp nanostructures toward the development of biocompatible composite scaffolds for BTE applications.</description><subject>Apatite</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Bone Regeneration</subject><subject>Bones</subject><subject>Durapatite - chemical synthesis</subject><subject>Durapatite - chemistry</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Nanorods</subject><subject>Nanotubes - chemistry</subject><subject>Particle Size</subject><subject>Surface Properties</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surgical implants</subject><subject>Tissue Engineering</subject><subject>X-rays</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLxDAUhYMoOj7-gmTppjU3SZtmKeILBBcqLkPa3miHTjImKTj-eis-trq6m--cA_cj5BhYCQzq02XZhTFN0bUlZyBKgJIx2CILaJQopKjVNlkwzVWhVF3tkf2UlowxLkHtkj0uuZJaNAvydD932C5bnwub0pAy9jQN70i74HMMIw2Ovmz6GN42dm3zkJF660MMfaIuRNoGjzQPKU1I0T8PHjEO_vmQ7Dg7Jjz6vgfk8fLi4fy6uL27ujk_uy06oVQuGst6WdlKS-k4Q2a1dH0tmNbYKqax0o3WfQuqd-isBdSiE0LWXDjJoKvFATn56l3H8DphymY1pA7H0XoMUzJQVyA5l6r5Byq0bpSs5N9oBQ2fnwwwo_UX2sWQUkRn1nFY2bgxwMynKrM0P6rMpyoDYGZVc_D4e2NqV9j_xn7ciA8DPJMG</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Nga, Nguyen Kim</creator><creator>Giang, Luu Truong</creator><creator>Huy, Tran Quang</creator><creator>Viet, Pham Hung</creator><creator>Migliaresi, Claudio</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering</title><author>Nga, Nguyen Kim ; Giang, Luu Truong ; Huy, Tran Quang ; Viet, Pham Hung ; Migliaresi, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-8a0d45a5944f20e0a94fd63099eb709e59899db17dfefaa1e93c334623f401c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Apatite</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Bone Regeneration</topic><topic>Bones</topic><topic>Durapatite - chemical synthesis</topic><topic>Durapatite - chemistry</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Nanorods</topic><topic>Nanotubes - chemistry</topic><topic>Particle Size</topic><topic>Surface Properties</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surgical implants</topic><topic>Tissue Engineering</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nga, Nguyen Kim</creatorcontrib><creatorcontrib>Giang, Luu Truong</creatorcontrib><creatorcontrib>Huy, Tran Quang</creatorcontrib><creatorcontrib>Viet, Pham Hung</creatorcontrib><creatorcontrib>Migliaresi, Claudio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nga, Nguyen Kim</au><au>Giang, Luu Truong</au><au>Huy, Tran Quang</au><au>Viet, Pham Hung</au><au>Migliaresi, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>116</volume><spage>666</spage><epage>673</epage><pages>666-673</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>This study presents the physicochemical characterization of the pluronic surfactant-assisted size control of hydroxyapatite (HAp) nanorods for bone tissue engineering (BTE). Rod-shaped HAp nanoparticles were synthesized via a simple route by hydrothermal treatment and with the assistance of the triblock co-polymer PEO20-PPO70-PEO20 (P123). The films of poly (d, l) lactic acid (PDLLA) were prepared as a substrate to spread synthesized HAp nanorods. Powder X-ray diffraction (XRD), field electron scanning microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherms, and energy-dispersive X-ray spectroscopy were used to characterize the structure and composition of the HAp samples. Results showed that regular rod-shaped HAp nanoparticles (with a mean length of 120 nm and a mean width of 28 nm) were successfully produced. Moreover, synthesized HAp nanorods revealed the rapid formation of bone-like apatite with a distinctive morphology, similar to flower-like apatite; the formation was observed as early as 7 days after incubation in stimulated body fluids. This study is a positive addition to the ongoing research on the preparation of HAp nanostructures toward the development of biocompatible composite scaffolds for BTE applications.</abstract><cop>Netherlands</cop><pmid>24274938</pmid><doi>10.1016/j.colsurfb.2013.11.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2014-04, Vol.116, p.666-673
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_1651422478
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Apatite
Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Biomedical materials
Bone Regeneration
Bones
Durapatite - chemical synthesis
Durapatite - chemistry
Humans
Hydroxyapatite
Nanorods
Nanotubes - chemistry
Particle Size
Surface Properties
Surface-Active Agents - chemistry
Surgical implants
Tissue Engineering
X-rays
title Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfactant-assisted%20size%20control%20of%20hydroxyapatite%20nanorods%20for%20bone%20tissue%20engineering&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Nga,%20Nguyen%20Kim&rft.date=2014-04-01&rft.volume=116&rft.spage=666&rft.epage=673&rft.pages=666-673&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2013.11.001&rft_dat=%3Cproquest_cross%3E1518243611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518243611&rft_id=info:pmid/24274938&rfr_iscdi=true