Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition
Ni superalloys are widely used for hot section components in jet engines because they are very resistant to corrosion and maintain reasonably high strength at elevated temperature. However, the repair cost of the parts is high, partly due to the complexities of process variable optimization and cont...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2014-08, Vol.45 (4), p.1520-1529 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1529 |
---|---|
container_issue | 4 |
container_start_page | 1520 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 45 |
creator | Lee, Yousub Nordin, Mark Babu, Sudarsanam Suresh Farson, Dave F. |
description | Ni superalloys are widely used for hot section components in jet engines because they are very resistant to corrosion and maintain reasonably high strength at elevated temperature. However, the repair cost of the parts is high, partly due to the complexities of process variable optimization and control in laser cladding. In particular, optimizing the process parameters by experiments is time-consuming and costly. The microstructure and properties of the metal deposit are significantly influenced by values temperature gradient
G
and solidification rate
R
at the weld pool solidification boundary. Optimized values can help to reduce defects and improve properties of laser deposits. Optimization is hindered by the fact that the clad melt pool is hot and small, making
in situ
measurement of such solidification conditions difficult. Numerical simulation of the laser deposition process is a possible alternative to experimental measurement to obtain values of clad solidification parameters. In this investigation,
G
and
R
values at the weld pool solidification boundary were obtained from a three dimensional numerical simulation of laser deposition process and melt pool. The primary dendrite arm spacing and cooling rate of the deposited material were then correlated to these solidification conditions. |
doi_str_mv | 10.1007/s11663-014-0054-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651422223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651422223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-337abce978245f27683222446a2dda4c27cb7c4854480790a0172af8f60485893</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxYMoWKsfwFtABC_R2f_JsdRWhYIH9bxsN7tlS7qJu4ngt3drioggDMzw5jeP4WXZJYJbBCDuIkKckwIQLQAYLcRRNkGMkgJViB-nGQQpGEfsNDuLcQsAvKrIJFsurDW6z1ubL5vB1fm89R9JcK3PU90bXwfXm3wWdvlLp7Tzm9z5fKWiCWnbtdHt2fPsxKommotDn2Zvy8Xr_LFYPT88zWerQjPE-oIQodbaVKLElFkseEkwxpRyhetaUY2FXgtNS0ZpCaICBUhgZUvLIYllRabZzejbhfZ9MLGXOxe1aRrlTTtEiThDNFliktCrP-i2HYJP30nEGFSC0G8KjZQObYzBWNkFt1PhUyKQ-2TlmKxMycp9slKkm-uDs4paNTYor138OcSloBgEJA6PXEwrvzHh1wf_mn8BK5SEpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550973423</pqid></control><display><type>article</type><title>Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition</title><source>Springer Nature - Complete Springer Journals</source><creator>Lee, Yousub ; Nordin, Mark ; Babu, Sudarsanam Suresh ; Farson, Dave F.</creator><creatorcontrib>Lee, Yousub ; Nordin, Mark ; Babu, Sudarsanam Suresh ; Farson, Dave F.</creatorcontrib><description>Ni superalloys are widely used for hot section components in jet engines because they are very resistant to corrosion and maintain reasonably high strength at elevated temperature. However, the repair cost of the parts is high, partly due to the complexities of process variable optimization and control in laser cladding. In particular, optimizing the process parameters by experiments is time-consuming and costly. The microstructure and properties of the metal deposit are significantly influenced by values temperature gradient
G
and solidification rate
R
at the weld pool solidification boundary. Optimized values can help to reduce defects and improve properties of laser deposits. Optimization is hindered by the fact that the clad melt pool is hot and small, making
in situ
measurement of such solidification conditions difficult. Numerical simulation of the laser deposition process is a possible alternative to experimental measurement to obtain values of clad solidification parameters. In this investigation,
G
and
R
values at the weld pool solidification boundary were obtained from a three dimensional numerical simulation of laser deposition process and melt pool. The primary dendrite arm spacing and cooling rate of the deposited material were then correlated to these solidification conditions.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-014-0054-7</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cladding ; Computer simulation ; Dendritic structure ; Exact sciences and technology ; Fluid dynamics ; Laser deposition ; Lasers ; Materials Science ; Mathematical models ; Melting ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Optimization ; Production of metals ; Production techniques ; Solidification ; Structural Materials ; Superalloys ; Surface treatment ; Surfaces and Interfaces ; Thin Films ; Weld metal pool</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2014-08, Vol.45 (4), p.1520-1529</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-337abce978245f27683222446a2dda4c27cb7c4854480790a0172af8f60485893</citedby><cites>FETCH-LOGICAL-c515t-337abce978245f27683222446a2dda4c27cb7c4854480790a0172af8f60485893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-014-0054-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-014-0054-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28742070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yousub</creatorcontrib><creatorcontrib>Nordin, Mark</creatorcontrib><creatorcontrib>Babu, Sudarsanam Suresh</creatorcontrib><creatorcontrib>Farson, Dave F.</creatorcontrib><title>Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Ni superalloys are widely used for hot section components in jet engines because they are very resistant to corrosion and maintain reasonably high strength at elevated temperature. However, the repair cost of the parts is high, partly due to the complexities of process variable optimization and control in laser cladding. In particular, optimizing the process parameters by experiments is time-consuming and costly. The microstructure and properties of the metal deposit are significantly influenced by values temperature gradient
G
and solidification rate
R
at the weld pool solidification boundary. Optimized values can help to reduce defects and improve properties of laser deposits. Optimization is hindered by the fact that the clad melt pool is hot and small, making
in situ
measurement of such solidification conditions difficult. Numerical simulation of the laser deposition process is a possible alternative to experimental measurement to obtain values of clad solidification parameters. In this investigation,
G
and
R
values at the weld pool solidification boundary were obtained from a three dimensional numerical simulation of laser deposition process and melt pool. The primary dendrite arm spacing and cooling rate of the deposited material were then correlated to these solidification conditions.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cladding</subject><subject>Computer simulation</subject><subject>Dendritic structure</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Optimization</subject><subject>Production of metals</subject><subject>Production techniques</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Superalloys</subject><subject>Surface treatment</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Weld metal pool</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9Lw0AQxYMoWKsfwFtABC_R2f_JsdRWhYIH9bxsN7tlS7qJu4ngt3drioggDMzw5jeP4WXZJYJbBCDuIkKckwIQLQAYLcRRNkGMkgJViB-nGQQpGEfsNDuLcQsAvKrIJFsurDW6z1ubL5vB1fm89R9JcK3PU90bXwfXm3wWdvlLp7Tzm9z5fKWiCWnbtdHt2fPsxKommotDn2Zvy8Xr_LFYPT88zWerQjPE-oIQodbaVKLElFkseEkwxpRyhetaUY2FXgtNS0ZpCaICBUhgZUvLIYllRabZzejbhfZ9MLGXOxe1aRrlTTtEiThDNFliktCrP-i2HYJP30nEGFSC0G8KjZQObYzBWNkFt1PhUyKQ-2TlmKxMycp9slKkm-uDs4paNTYor138OcSloBgEJA6PXEwrvzHh1wf_mn8BK5SEpg</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Lee, Yousub</creator><creator>Nordin, Mark</creator><creator>Babu, Sudarsanam Suresh</creator><creator>Farson, Dave F.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SE</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition</title><author>Lee, Yousub ; Nordin, Mark ; Babu, Sudarsanam Suresh ; Farson, Dave F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-337abce978245f27683222446a2dda4c27cb7c4854480790a0172af8f60485893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cladding</topic><topic>Computer simulation</topic><topic>Dendritic structure</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Optimization</topic><topic>Production of metals</topic><topic>Production techniques</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Superalloys</topic><topic>Surface treatment</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Weld metal pool</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yousub</creatorcontrib><creatorcontrib>Nordin, Mark</creatorcontrib><creatorcontrib>Babu, Sudarsanam Suresh</creatorcontrib><creatorcontrib>Farson, Dave F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yousub</au><au>Nordin, Mark</au><au>Babu, Sudarsanam Suresh</au><au>Farson, Dave F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>45</volume><issue>4</issue><spage>1520</spage><epage>1529</epage><pages>1520-1529</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>Ni superalloys are widely used for hot section components in jet engines because they are very resistant to corrosion and maintain reasonably high strength at elevated temperature. However, the repair cost of the parts is high, partly due to the complexities of process variable optimization and control in laser cladding. In particular, optimizing the process parameters by experiments is time-consuming and costly. The microstructure and properties of the metal deposit are significantly influenced by values temperature gradient
G
and solidification rate
R
at the weld pool solidification boundary. Optimized values can help to reduce defects and improve properties of laser deposits. Optimization is hindered by the fact that the clad melt pool is hot and small, making
in situ
measurement of such solidification conditions difficult. Numerical simulation of the laser deposition process is a possible alternative to experimental measurement to obtain values of clad solidification parameters. In this investigation,
G
and
R
values at the weld pool solidification boundary were obtained from a three dimensional numerical simulation of laser deposition process and melt pool. The primary dendrite arm spacing and cooling rate of the deposited material were then correlated to these solidification conditions.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-014-0054-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2014-08, Vol.45 (4), p.1520-1529 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651422223 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Cladding Computer simulation Dendritic structure Exact sciences and technology Fluid dynamics Laser deposition Lasers Materials Science Mathematical models Melting Metallic Materials Metals. Metallurgy Nanotechnology Optimization Production of metals Production techniques Solidification Structural Materials Superalloys Surface treatment Surfaces and Interfaces Thin Films Weld metal pool |
title | Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Fluid%20Convection%20on%20Dendrite%20Arm%20Spacing%20in%20Laser%20Deposition&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Lee,%20Yousub&rft.date=2014-08-01&rft.volume=45&rft.issue=4&rft.spage=1520&rft.epage=1529&rft.pages=1520-1529&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-014-0054-7&rft_dat=%3Cproquest_cross%3E1651422223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550973423&rft_id=info:pmid/&rfr_iscdi=true |