Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes

New composite layer architecture of 3D hydrogel polymer network that is loaded with mole­cularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular chemistry and physics 2014-12, Vol.215 (23), p.2295-2304
Hauptverfasser: Sharma, Nityanand, Petri, Christian, Jonas, Ulrich, Bach, Monika, Tovar, Günter, Mrkvová, Kateřina, Vala, Milan, Homola, Jiří, Knoll, Wolfgang, Dostálek, Jakub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2304
container_issue 23
container_start_page 2295
container_title Macromolecular chemistry and physics
container_volume 215
creator Sharma, Nityanand
Petri, Christian
Jonas, Ulrich
Bach, Monika
Tovar, Günter
Mrkvová, Kateřina
Vala, Milan
Homola, Jiří
Knoll, Wolfgang
Dostálek, Jakub
description New composite layer architecture of 3D hydrogel polymer network that is loaded with mole­cularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonance (SPR) sensor in order to simultaneously serve as an optical waveguide and large capacity binding‐matrix for imprinted target analyte. Optical waveguide spectroscopy (OWS) is used as a label‐free readout method allowing direct measurement of refractive index changes that are associated with molecular binding events inside the matrix. This approach is implemented by using a photo‐crosslinkable poly(N‐isopropylacrylamide)‐based hydrogel and poly[(ethylene glycol dimethylacrylate)‐(methacrylic acid)] nanoparticles that are imprinted with l‐Boc‐phenylalanine‐anilide (l‐BFA, molecular weight 353 g mol−1). Titration experiments with the specific target and other structurally similar reference compounds show good specificity and limit of detection for target l‐BFA as low as 2 × 10−6 m. A new approach to direct detection of low‐molecular‐weight compounds that utilizes optical waveguide spectroscopy (OWS) and molecularly imprinted polymer nanoparticles (nanoMIP) is reported. It is based on a highly open composite architecture of a photo‐crosslinked hydrogel network and embedded nanoMIPs that simultaneously serves as an optical waveguide and large‐capacity binding‐matrix.
doi_str_mv 10.1002/macp.201400260
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651419953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3615157311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4950-1429beb214f7611b88e035eb1ceb80b18e0aa607a6984c8af9e997e1b11ea7523</originalsourceid><addsrcrecordid>eNqFkEGLFDEQhRtRcF29eg6I4KXHVNLpdI7DrK4LM-4IyoCXkM5Wr1nTndmk27X_vRlmGcSLp6oH33tVvKJ4DXQBlLL3vbH7BaNQZVHTJ8UZCAYlV1w8zTtlrAQu2PPiRUp3lNKGKnlWdJvg0U7eRD-Tq34f3TDiDdkGP_cYyc78wtvJ3WAiXYjkwkW0I7nej84aTy5wzNKFgYSOrMNDeQord-huf4xkORg_j5heFs864xO-epznxbePH76uPpXr68ur1XJd2koJWkLFVIstg6qTNUDbNEi5wBYstg1tIUtjaipNrZrKNqZTqJREaAHQSMH4efHumLuP4X7CNOreJYvemwHDlDTUAipQSvCMvvkHvQtTzP8eqHxDAK3rTC2OlI0hpYidzhX1Js4aqD7Urg-161Pt2fD2Mdak3FEXzWBdOrmYoiAZrTKnjtyD8zj_J1Vvlqvt3zfKo9elEX-fvCb-1LXkUujd50u93n7ffuGN1Bv-Bw7tooE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660751066</pqid></control><display><type>article</type><title>Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes</title><source>Wiley Online Library</source><creator>Sharma, Nityanand ; Petri, Christian ; Jonas, Ulrich ; Bach, Monika ; Tovar, Günter ; Mrkvová, Kateřina ; Vala, Milan ; Homola, Jiří ; Knoll, Wolfgang ; Dostálek, Jakub</creator><creatorcontrib>Sharma, Nityanand ; Petri, Christian ; Jonas, Ulrich ; Bach, Monika ; Tovar, Günter ; Mrkvová, Kateřina ; Vala, Milan ; Homola, Jiří ; Knoll, Wolfgang ; Dostálek, Jakub</creatorcontrib><description>New composite layer architecture of 3D hydrogel polymer network that is loaded with mole­cularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonance (SPR) sensor in order to simultaneously serve as an optical waveguide and large capacity binding‐matrix for imprinted target analyte. Optical waveguide spectroscopy (OWS) is used as a label‐free readout method allowing direct measurement of refractive index changes that are associated with molecular binding events inside the matrix. This approach is implemented by using a photo‐crosslinkable poly(N‐isopropylacrylamide)‐based hydrogel and poly[(ethylene glycol dimethylacrylate)‐(methacrylic acid)] nanoparticles that are imprinted with l‐Boc‐phenylalanine‐anilide (l‐BFA, molecular weight 353 g mol−1). Titration experiments with the specific target and other structurally similar reference compounds show good specificity and limit of detection for target l‐BFA as low as 2 × 10−6 m. A new approach to direct detection of low‐molecular‐weight compounds that utilizes optical waveguide spectroscopy (OWS) and molecularly imprinted polymer nanoparticles (nanoMIP) is reported. It is based on a highly open composite architecture of a photo‐crosslinked hydrogel network and embedded nanoMIPs that simultaneously serves as an optical waveguide and large‐capacity binding‐matrix.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.201400260</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Analytical chemistry ; Applied sciences ; Architecture ; Chemistry ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Hydrogels ; Imprinted polymers ; label-free biosensors ; molecularly imprinted polymers ; Nanoparticles ; Nanostructure ; Networks ; Optical waveguides ; optical waveguides spectroscopy ; Polymer industry, paints, wood ; Spectrometric and optical methods ; Spectroscopy ; Technology of polymers</subject><ispartof>Macromolecular chemistry and physics, 2014-12, Vol.215 (23), p.2295-2304</ispartof><rights>2014 Austrian Institute of Technology GmbH. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2014 by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4950-1429beb214f7611b88e035eb1ceb80b18e0aa607a6984c8af9e997e1b11ea7523</citedby><cites>FETCH-LOGICAL-c4950-1429beb214f7611b88e035eb1ceb80b18e0aa607a6984c8af9e997e1b11ea7523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.201400260$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.201400260$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29017204$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Nityanand</creatorcontrib><creatorcontrib>Petri, Christian</creatorcontrib><creatorcontrib>Jonas, Ulrich</creatorcontrib><creatorcontrib>Bach, Monika</creatorcontrib><creatorcontrib>Tovar, Günter</creatorcontrib><creatorcontrib>Mrkvová, Kateřina</creatorcontrib><creatorcontrib>Vala, Milan</creatorcontrib><creatorcontrib>Homola, Jiří</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><creatorcontrib>Dostálek, Jakub</creatorcontrib><title>Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes</title><title>Macromolecular chemistry and physics</title><addtitle>Macromol. Chem. Phys</addtitle><description>New composite layer architecture of 3D hydrogel polymer network that is loaded with mole­cularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonance (SPR) sensor in order to simultaneously serve as an optical waveguide and large capacity binding‐matrix for imprinted target analyte. Optical waveguide spectroscopy (OWS) is used as a label‐free readout method allowing direct measurement of refractive index changes that are associated with molecular binding events inside the matrix. This approach is implemented by using a photo‐crosslinkable poly(N‐isopropylacrylamide)‐based hydrogel and poly[(ethylene glycol dimethylacrylate)‐(methacrylic acid)] nanoparticles that are imprinted with l‐Boc‐phenylalanine‐anilide (l‐BFA, molecular weight 353 g mol−1). Titration experiments with the specific target and other structurally similar reference compounds show good specificity and limit of detection for target l‐BFA as low as 2 × 10−6 m. A new approach to direct detection of low‐molecular‐weight compounds that utilizes optical waveguide spectroscopy (OWS) and molecularly imprinted polymer nanoparticles (nanoMIP) is reported. It is based on a highly open composite architecture of a photo‐crosslinked hydrogel network and embedded nanoMIPs that simultaneously serves as an optical waveguide and large‐capacity binding‐matrix.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Chemistry</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Hydrogels</subject><subject>Imprinted polymers</subject><subject>label-free biosensors</subject><subject>molecularly imprinted polymers</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Optical waveguides</subject><subject>optical waveguides spectroscopy</subject><subject>Polymer industry, paints, wood</subject><subject>Spectrometric and optical methods</subject><subject>Spectroscopy</subject><subject>Technology of polymers</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkEGLFDEQhRtRcF29eg6I4KXHVNLpdI7DrK4LM-4IyoCXkM5Wr1nTndmk27X_vRlmGcSLp6oH33tVvKJ4DXQBlLL3vbH7BaNQZVHTJ8UZCAYlV1w8zTtlrAQu2PPiRUp3lNKGKnlWdJvg0U7eRD-Tq34f3TDiDdkGP_cYyc78wtvJ3WAiXYjkwkW0I7nej84aTy5wzNKFgYSOrMNDeQord-huf4xkORg_j5heFs864xO-epznxbePH76uPpXr68ur1XJd2koJWkLFVIstg6qTNUDbNEi5wBYstg1tIUtjaipNrZrKNqZTqJREaAHQSMH4efHumLuP4X7CNOreJYvemwHDlDTUAipQSvCMvvkHvQtTzP8eqHxDAK3rTC2OlI0hpYidzhX1Js4aqD7Urg-161Pt2fD2Mdak3FEXzWBdOrmYoiAZrTKnjtyD8zj_J1Vvlqvt3zfKo9elEX-fvCb-1LXkUujd50u93n7ffuGN1Bv-Bw7tooE</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Sharma, Nityanand</creator><creator>Petri, Christian</creator><creator>Jonas, Ulrich</creator><creator>Bach, Monika</creator><creator>Tovar, Günter</creator><creator>Mrkvová, Kateřina</creator><creator>Vala, Milan</creator><creator>Homola, Jiří</creator><creator>Knoll, Wolfgang</creator><creator>Dostálek, Jakub</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>201412</creationdate><title>Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes</title><author>Sharma, Nityanand ; Petri, Christian ; Jonas, Ulrich ; Bach, Monika ; Tovar, Günter ; Mrkvová, Kateřina ; Vala, Milan ; Homola, Jiří ; Knoll, Wolfgang ; Dostálek, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4950-1429beb214f7611b88e035eb1ceb80b18e0aa607a6984c8af9e997e1b11ea7523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Chemistry</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Hydrogels</topic><topic>Imprinted polymers</topic><topic>label-free biosensors</topic><topic>molecularly imprinted polymers</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Optical waveguides</topic><topic>optical waveguides spectroscopy</topic><topic>Polymer industry, paints, wood</topic><topic>Spectrometric and optical methods</topic><topic>Spectroscopy</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Nityanand</creatorcontrib><creatorcontrib>Petri, Christian</creatorcontrib><creatorcontrib>Jonas, Ulrich</creatorcontrib><creatorcontrib>Bach, Monika</creatorcontrib><creatorcontrib>Tovar, Günter</creatorcontrib><creatorcontrib>Mrkvová, Kateřina</creatorcontrib><creatorcontrib>Vala, Milan</creatorcontrib><creatorcontrib>Homola, Jiří</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><creatorcontrib>Dostálek, Jakub</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library</collection><collection>Wiley Online Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Nityanand</au><au>Petri, Christian</au><au>Jonas, Ulrich</au><au>Bach, Monika</au><au>Tovar, Günter</au><au>Mrkvová, Kateřina</au><au>Vala, Milan</au><au>Homola, Jiří</au><au>Knoll, Wolfgang</au><au>Dostálek, Jakub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes</atitle><jtitle>Macromolecular chemistry and physics</jtitle><addtitle>Macromol. Chem. Phys</addtitle><date>2014-12</date><risdate>2014</risdate><volume>215</volume><issue>23</issue><spage>2295</spage><epage>2304</epage><pages>2295-2304</pages><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>New composite layer architecture of 3D hydrogel polymer network that is loaded with mole­cularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonance (SPR) sensor in order to simultaneously serve as an optical waveguide and large capacity binding‐matrix for imprinted target analyte. Optical waveguide spectroscopy (OWS) is used as a label‐free readout method allowing direct measurement of refractive index changes that are associated with molecular binding events inside the matrix. This approach is implemented by using a photo‐crosslinkable poly(N‐isopropylacrylamide)‐based hydrogel and poly[(ethylene glycol dimethylacrylate)‐(methacrylic acid)] nanoparticles that are imprinted with l‐Boc‐phenylalanine‐anilide (l‐BFA, molecular weight 353 g mol−1). Titration experiments with the specific target and other structurally similar reference compounds show good specificity and limit of detection for target l‐BFA as low as 2 × 10−6 m. A new approach to direct detection of low‐molecular‐weight compounds that utilizes optical waveguide spectroscopy (OWS) and molecularly imprinted polymer nanoparticles (nanoMIP) is reported. It is based on a highly open composite architecture of a photo‐crosslinked hydrogel network and embedded nanoMIPs that simultaneously serves as an optical waveguide and large‐capacity binding‐matrix.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/macp.201400260</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1352
ispartof Macromolecular chemistry and physics, 2014-12, Vol.215 (23), p.2295-2304
issn 1022-1352
1521-3935
language eng
recordid cdi_proquest_miscellaneous_1651419953
source Wiley Online Library
subjects Analytical chemistry
Applied sciences
Architecture
Chemistry
Composites
Exact sciences and technology
Forms of application and semi-finished materials
Hydrogels
Imprinted polymers
label-free biosensors
molecularly imprinted polymers
Nanoparticles
Nanostructure
Networks
Optical waveguides
optical waveguides spectroscopy
Polymer industry, paints, wood
Spectrometric and optical methods
Spectroscopy
Technology of polymers
title Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecularly%20Imprinted%20Polymer%20Waveguides%20for%20Direct%20Optical%20Detection%20of%20Low-Molecular-Weight%20Analytes&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Sharma,%20Nityanand&rft.date=2014-12&rft.volume=215&rft.issue=23&rft.spage=2295&rft.epage=2304&rft.pages=2295-2304&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.201400260&rft_dat=%3Cproquest_cross%3E3615157311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660751066&rft_id=info:pmid/&rfr_iscdi=true