Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes
New composite layer architecture of 3D hydrogel polymer network that is loaded with molecularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonan...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2014-12, Vol.215 (23), p.2295-2304 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2304 |
---|---|
container_issue | 23 |
container_start_page | 2295 |
container_title | Macromolecular chemistry and physics |
container_volume | 215 |
creator | Sharma, Nityanand Petri, Christian Jonas, Ulrich Bach, Monika Tovar, Günter Mrkvová, Kateřina Vala, Milan Homola, Jiří Knoll, Wolfgang Dostálek, Jakub |
description | New composite layer architecture of 3D hydrogel polymer network that is loaded with molecularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonance (SPR) sensor in order to simultaneously serve as an optical waveguide and large capacity binding‐matrix for imprinted target analyte. Optical waveguide spectroscopy (OWS) is used as a label‐free readout method allowing direct measurement of refractive index changes that are associated with molecular binding events inside the matrix. This approach is implemented by using a photo‐crosslinkable poly(N‐isopropylacrylamide)‐based hydrogel and poly[(ethylene glycol dimethylacrylate)‐(methacrylic acid)] nanoparticles that are imprinted with l‐Boc‐phenylalanine‐anilide (l‐BFA, molecular weight 353 g mol−1). Titration experiments with the specific target and other structurally similar reference compounds show good specificity and limit of detection for target l‐BFA as low as 2 × 10−6
m.
A new approach to direct detection of low‐molecular‐weight compounds that utilizes optical waveguide spectroscopy (OWS) and molecularly imprinted polymer nanoparticles (nanoMIP) is reported. It is based on a highly open composite architecture of a photo‐crosslinked hydrogel network and embedded nanoMIPs that simultaneously serves as an optical waveguide and large‐capacity binding‐matrix. |
doi_str_mv | 10.1002/macp.201400260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651419953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3615157311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4950-1429beb214f7611b88e035eb1ceb80b18e0aa607a6984c8af9e997e1b11ea7523</originalsourceid><addsrcrecordid>eNqFkEGLFDEQhRtRcF29eg6I4KXHVNLpdI7DrK4LM-4IyoCXkM5Wr1nTndmk27X_vRlmGcSLp6oH33tVvKJ4DXQBlLL3vbH7BaNQZVHTJ8UZCAYlV1w8zTtlrAQu2PPiRUp3lNKGKnlWdJvg0U7eRD-Tq34f3TDiDdkGP_cYyc78wtvJ3WAiXYjkwkW0I7nej84aTy5wzNKFgYSOrMNDeQord-huf4xkORg_j5heFs864xO-epznxbePH76uPpXr68ur1XJd2koJWkLFVIstg6qTNUDbNEi5wBYstg1tIUtjaipNrZrKNqZTqJREaAHQSMH4efHumLuP4X7CNOreJYvemwHDlDTUAipQSvCMvvkHvQtTzP8eqHxDAK3rTC2OlI0hpYidzhX1Js4aqD7Urg-161Pt2fD2Mdak3FEXzWBdOrmYoiAZrTKnjtyD8zj_J1Vvlqvt3zfKo9elEX-fvCb-1LXkUujd50u93n7ffuGN1Bv-Bw7tooE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660751066</pqid></control><display><type>article</type><title>Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes</title><source>Wiley Online Library</source><creator>Sharma, Nityanand ; Petri, Christian ; Jonas, Ulrich ; Bach, Monika ; Tovar, Günter ; Mrkvová, Kateřina ; Vala, Milan ; Homola, Jiří ; Knoll, Wolfgang ; Dostálek, Jakub</creator><creatorcontrib>Sharma, Nityanand ; Petri, Christian ; Jonas, Ulrich ; Bach, Monika ; Tovar, Günter ; Mrkvová, Kateřina ; Vala, Milan ; Homola, Jiří ; Knoll, Wolfgang ; Dostálek, Jakub</creatorcontrib><description>New composite layer architecture of 3D hydrogel polymer network that is loaded with molecularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonance (SPR) sensor in order to simultaneously serve as an optical waveguide and large capacity binding‐matrix for imprinted target analyte. Optical waveguide spectroscopy (OWS) is used as a label‐free readout method allowing direct measurement of refractive index changes that are associated with molecular binding events inside the matrix. This approach is implemented by using a photo‐crosslinkable poly(N‐isopropylacrylamide)‐based hydrogel and poly[(ethylene glycol dimethylacrylate)‐(methacrylic acid)] nanoparticles that are imprinted with l‐Boc‐phenylalanine‐anilide (l‐BFA, molecular weight 353 g mol−1). Titration experiments with the specific target and other structurally similar reference compounds show good specificity and limit of detection for target l‐BFA as low as 2 × 10−6
m.
A new approach to direct detection of low‐molecular‐weight compounds that utilizes optical waveguide spectroscopy (OWS) and molecularly imprinted polymer nanoparticles (nanoMIP) is reported. It is based on a highly open composite architecture of a photo‐crosslinked hydrogel network and embedded nanoMIPs that simultaneously serves as an optical waveguide and large‐capacity binding‐matrix.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.201400260</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Analytical chemistry ; Applied sciences ; Architecture ; Chemistry ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Hydrogels ; Imprinted polymers ; label-free biosensors ; molecularly imprinted polymers ; Nanoparticles ; Nanostructure ; Networks ; Optical waveguides ; optical waveguides spectroscopy ; Polymer industry, paints, wood ; Spectrometric and optical methods ; Spectroscopy ; Technology of polymers</subject><ispartof>Macromolecular chemistry and physics, 2014-12, Vol.215 (23), p.2295-2304</ispartof><rights>2014 Austrian Institute of Technology GmbH. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2014 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4950-1429beb214f7611b88e035eb1ceb80b18e0aa607a6984c8af9e997e1b11ea7523</citedby><cites>FETCH-LOGICAL-c4950-1429beb214f7611b88e035eb1ceb80b18e0aa607a6984c8af9e997e1b11ea7523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.201400260$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.201400260$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29017204$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Nityanand</creatorcontrib><creatorcontrib>Petri, Christian</creatorcontrib><creatorcontrib>Jonas, Ulrich</creatorcontrib><creatorcontrib>Bach, Monika</creatorcontrib><creatorcontrib>Tovar, Günter</creatorcontrib><creatorcontrib>Mrkvová, Kateřina</creatorcontrib><creatorcontrib>Vala, Milan</creatorcontrib><creatorcontrib>Homola, Jiří</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><creatorcontrib>Dostálek, Jakub</creatorcontrib><title>Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes</title><title>Macromolecular chemistry and physics</title><addtitle>Macromol. Chem. Phys</addtitle><description>New composite layer architecture of 3D hydrogel polymer network that is loaded with molecularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonance (SPR) sensor in order to simultaneously serve as an optical waveguide and large capacity binding‐matrix for imprinted target analyte. Optical waveguide spectroscopy (OWS) is used as a label‐free readout method allowing direct measurement of refractive index changes that are associated with molecular binding events inside the matrix. This approach is implemented by using a photo‐crosslinkable poly(N‐isopropylacrylamide)‐based hydrogel and poly[(ethylene glycol dimethylacrylate)‐(methacrylic acid)] nanoparticles that are imprinted with l‐Boc‐phenylalanine‐anilide (l‐BFA, molecular weight 353 g mol−1). Titration experiments with the specific target and other structurally similar reference compounds show good specificity and limit of detection for target l‐BFA as low as 2 × 10−6
m.
A new approach to direct detection of low‐molecular‐weight compounds that utilizes optical waveguide spectroscopy (OWS) and molecularly imprinted polymer nanoparticles (nanoMIP) is reported. It is based on a highly open composite architecture of a photo‐crosslinked hydrogel network and embedded nanoMIPs that simultaneously serves as an optical waveguide and large‐capacity binding‐matrix.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Chemistry</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Hydrogels</subject><subject>Imprinted polymers</subject><subject>label-free biosensors</subject><subject>molecularly imprinted polymers</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Optical waveguides</subject><subject>optical waveguides spectroscopy</subject><subject>Polymer industry, paints, wood</subject><subject>Spectrometric and optical methods</subject><subject>Spectroscopy</subject><subject>Technology of polymers</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkEGLFDEQhRtRcF29eg6I4KXHVNLpdI7DrK4LM-4IyoCXkM5Wr1nTndmk27X_vRlmGcSLp6oH33tVvKJ4DXQBlLL3vbH7BaNQZVHTJ8UZCAYlV1w8zTtlrAQu2PPiRUp3lNKGKnlWdJvg0U7eRD-Tq34f3TDiDdkGP_cYyc78wtvJ3WAiXYjkwkW0I7nej84aTy5wzNKFgYSOrMNDeQord-huf4xkORg_j5heFs864xO-epznxbePH76uPpXr68ur1XJd2koJWkLFVIstg6qTNUDbNEi5wBYstg1tIUtjaipNrZrKNqZTqJREaAHQSMH4efHumLuP4X7CNOreJYvemwHDlDTUAipQSvCMvvkHvQtTzP8eqHxDAK3rTC2OlI0hpYidzhX1Js4aqD7Urg-161Pt2fD2Mdak3FEXzWBdOrmYoiAZrTKnjtyD8zj_J1Vvlqvt3zfKo9elEX-fvCb-1LXkUujd50u93n7ffuGN1Bv-Bw7tooE</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Sharma, Nityanand</creator><creator>Petri, Christian</creator><creator>Jonas, Ulrich</creator><creator>Bach, Monika</creator><creator>Tovar, Günter</creator><creator>Mrkvová, Kateřina</creator><creator>Vala, Milan</creator><creator>Homola, Jiří</creator><creator>Knoll, Wolfgang</creator><creator>Dostálek, Jakub</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>201412</creationdate><title>Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes</title><author>Sharma, Nityanand ; Petri, Christian ; Jonas, Ulrich ; Bach, Monika ; Tovar, Günter ; Mrkvová, Kateřina ; Vala, Milan ; Homola, Jiří ; Knoll, Wolfgang ; Dostálek, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4950-1429beb214f7611b88e035eb1ceb80b18e0aa607a6984c8af9e997e1b11ea7523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Chemistry</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Hydrogels</topic><topic>Imprinted polymers</topic><topic>label-free biosensors</topic><topic>molecularly imprinted polymers</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Optical waveguides</topic><topic>optical waveguides spectroscopy</topic><topic>Polymer industry, paints, wood</topic><topic>Spectrometric and optical methods</topic><topic>Spectroscopy</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Nityanand</creatorcontrib><creatorcontrib>Petri, Christian</creatorcontrib><creatorcontrib>Jonas, Ulrich</creatorcontrib><creatorcontrib>Bach, Monika</creatorcontrib><creatorcontrib>Tovar, Günter</creatorcontrib><creatorcontrib>Mrkvová, Kateřina</creatorcontrib><creatorcontrib>Vala, Milan</creatorcontrib><creatorcontrib>Homola, Jiří</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><creatorcontrib>Dostálek, Jakub</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library</collection><collection>Wiley Online Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Nityanand</au><au>Petri, Christian</au><au>Jonas, Ulrich</au><au>Bach, Monika</au><au>Tovar, Günter</au><au>Mrkvová, Kateřina</au><au>Vala, Milan</au><au>Homola, Jiří</au><au>Knoll, Wolfgang</au><au>Dostálek, Jakub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes</atitle><jtitle>Macromolecular chemistry and physics</jtitle><addtitle>Macromol. Chem. Phys</addtitle><date>2014-12</date><risdate>2014</risdate><volume>215</volume><issue>23</issue><spage>2295</spage><epage>2304</epage><pages>2295-2304</pages><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>New composite layer architecture of 3D hydrogel polymer network that is loaded with molecularly imprinted polymer nanoparticles (nanoMIP) is reported for direct optical detection of low‐molecular‐weight compounds. This composite layer is attached to the metallic surface of a surface plasmon resonance (SPR) sensor in order to simultaneously serve as an optical waveguide and large capacity binding‐matrix for imprinted target analyte. Optical waveguide spectroscopy (OWS) is used as a label‐free readout method allowing direct measurement of refractive index changes that are associated with molecular binding events inside the matrix. This approach is implemented by using a photo‐crosslinkable poly(N‐isopropylacrylamide)‐based hydrogel and poly[(ethylene glycol dimethylacrylate)‐(methacrylic acid)] nanoparticles that are imprinted with l‐Boc‐phenylalanine‐anilide (l‐BFA, molecular weight 353 g mol−1). Titration experiments with the specific target and other structurally similar reference compounds show good specificity and limit of detection for target l‐BFA as low as 2 × 10−6
m.
A new approach to direct detection of low‐molecular‐weight compounds that utilizes optical waveguide spectroscopy (OWS) and molecularly imprinted polymer nanoparticles (nanoMIP) is reported. It is based on a highly open composite architecture of a photo‐crosslinked hydrogel network and embedded nanoMIPs that simultaneously serves as an optical waveguide and large‐capacity binding‐matrix.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/macp.201400260</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2014-12, Vol.215 (23), p.2295-2304 |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651419953 |
source | Wiley Online Library |
subjects | Analytical chemistry Applied sciences Architecture Chemistry Composites Exact sciences and technology Forms of application and semi-finished materials Hydrogels Imprinted polymers label-free biosensors molecularly imprinted polymers Nanoparticles Nanostructure Networks Optical waveguides optical waveguides spectroscopy Polymer industry, paints, wood Spectrometric and optical methods Spectroscopy Technology of polymers |
title | Molecularly Imprinted Polymer Waveguides for Direct Optical Detection of Low-Molecular-Weight Analytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecularly%20Imprinted%20Polymer%20Waveguides%20for%20Direct%20Optical%20Detection%20of%20Low-Molecular-Weight%20Analytes&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Sharma,%20Nityanand&rft.date=2014-12&rft.volume=215&rft.issue=23&rft.spage=2295&rft.epage=2304&rft.pages=2295-2304&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.201400260&rft_dat=%3Cproquest_cross%3E3615157311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660751066&rft_id=info:pmid/&rfr_iscdi=true |