Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing

A useful strategy has been developed to fabricate carbon-nanotube–nickel (CNT–Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2015-01, Vol.63, p.325-330
Hauptverfasser: Choi, Taejin, Kim, Soo Hyeon, Lee, Chang Wan, Kim, Hangil, Choi, Sang-Kyung, Kim, Soo-Hyun, Kim, Eunkyoung, Park, Jusang, Kim, Hyungjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue
container_start_page 325
container_title Biosensors & bioelectronics
container_volume 63
creator Choi, Taejin
Kim, Soo Hyeon
Lee, Chang Wan
Kim, Hangil
Choi, Sang-Kyung
Kim, Soo-Hyun
Kim, Eunkyoung
Park, Jusang
Kim, Hyungjun
description A useful strategy has been developed to fabricate carbon-nanotube–nickel (CNT–Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT–Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT–Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5μM–2mM, short response time (3s), a low detection limit (2μM), high sensitivity (1384.1μAmM−1cm−2), and good selectivity and repeatability. •Carbon tetrabromide precursor and Au catalyst can be used for chemical vapor deposition of the CNT which is a good supporting material for ALD of Ni.•Atomic layer deposition (ALD) of Ni is a promising method for preparing a carbon nanotube (CNT)-based Ni nanocomposite•CNT–Ni nanocomposite modified GCE is an excellent electrocatalyst for glucose oxidation.
doi_str_mv 10.1016/j.bios.2014.07.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651417799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566314005600</els_id><sourcerecordid>1559618572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-670844897b1a35e8ac91881722f406acb03ffa68782f54883664a2b1452029fb3</originalsourceid><addsrcrecordid>eNqNkcuKFDEUhoMoTjv6Ai4kG8FNtblULgVuZPAGAy7UdUilT7rTViVtUiW0q9nME_iGPonpi7pTVwnJ9_8czofQY0qWlFD5fLvsQypLRmi7JGpJRHcHLahWvGkZF3fRgnRCNkJKfoEelLIlhCjakfvogglKORF0gW4_7OO0gRIKTh47m_sUcbQxTXMPP26-x-A-w3B8cWncpRImKHguIa6xndIYHB7sHjJewfEz1LhPGW_CetPsINf7aKMDHFNsIH7bj3aqmfUwu1QAF4iHqofonrdDgUfn8xJ9ev3q49Xb5vr9m3dXL68b1wo2NVIR3ba6Uz21XIC2rqNaU8WYb4m0rifceyu10syLVmsuZWtZT2uYsM73_BI9O_XucvoyQ5nMGIqDYbAR0lwMlYK2VKmu-w-UC8KZZOrfqBCdpFooVlF2Ql1OpWTwZpfDaPPeUGIOUs3WHKSag1RDlKlSa-jJuX_uR1j9jvyyWIGnZ8AWZwef68ZD-cPVTVB1LHpx4qDu-GuAbIoLUO2sQgY3mVUKf5vjJ8WPwjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559618572</pqid></control><display><type>article</type><title>Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Choi, Taejin ; Kim, Soo Hyeon ; Lee, Chang Wan ; Kim, Hangil ; Choi, Sang-Kyung ; Kim, Soo-Hyun ; Kim, Eunkyoung ; Park, Jusang ; Kim, Hyungjun</creator><creatorcontrib>Choi, Taejin ; Kim, Soo Hyeon ; Lee, Chang Wan ; Kim, Hangil ; Choi, Sang-Kyung ; Kim, Soo-Hyun ; Kim, Eunkyoung ; Park, Jusang ; Kim, Hyungjun</creatorcontrib><description>A useful strategy has been developed to fabricate carbon-nanotube–nickel (CNT–Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT–Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT–Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5μM–2mM, short response time (3s), a low detection limit (2μM), high sensitivity (1384.1μAmM−1cm−2), and good selectivity and repeatability. •Carbon tetrabromide precursor and Au catalyst can be used for chemical vapor deposition of the CNT which is a good supporting material for ALD of Ni.•Atomic layer deposition (ALD) of Ni is a promising method for preparing a carbon nanotube (CNT)-based Ni nanocomposite•CNT–Ni nanocomposite modified GCE is an excellent electrocatalyst for glucose oxidation.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2014.07.059</identifier><identifier>PMID: 25113051</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Atomic layer deposition ; Biological and medical sciences ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Carbon nanotube nanocomposite ; Carbon tetrabromide precursor ; Chemical vapor deposition ; Deposition ; Enzyme-free glucose biosensor ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - chemistry ; Glucose - isolation &amp; purification ; Humans ; Methods. Procedures. Technologies ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanocomposites ; Nanocomposites - chemistry ; Nanostructure ; Nanotubes, Carbon - chemistry ; Nickel ; Nickel - chemistry ; Nickel nanoparticle electrocatalyst ; Photoelectron Spectroscopy ; Scanning electron microscopy ; Various methods and equipments</subject><ispartof>Biosensors &amp; bioelectronics, 2015-01, Vol.63, p.325-330</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-670844897b1a35e8ac91881722f406acb03ffa68782f54883664a2b1452029fb3</citedby><cites>FETCH-LOGICAL-c452t-670844897b1a35e8ac91881722f406acb03ffa68782f54883664a2b1452029fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566314005600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28831759$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25113051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Taejin</creatorcontrib><creatorcontrib>Kim, Soo Hyeon</creatorcontrib><creatorcontrib>Lee, Chang Wan</creatorcontrib><creatorcontrib>Kim, Hangil</creatorcontrib><creatorcontrib>Choi, Sang-Kyung</creatorcontrib><creatorcontrib>Kim, Soo-Hyun</creatorcontrib><creatorcontrib>Kim, Eunkyoung</creatorcontrib><creatorcontrib>Park, Jusang</creatorcontrib><creatorcontrib>Kim, Hyungjun</creatorcontrib><title>Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>A useful strategy has been developed to fabricate carbon-nanotube–nickel (CNT–Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT–Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT–Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5μM–2mM, short response time (3s), a low detection limit (2μM), high sensitivity (1384.1μAmM−1cm−2), and good selectivity and repeatability. •Carbon tetrabromide precursor and Au catalyst can be used for chemical vapor deposition of the CNT which is a good supporting material for ALD of Ni.•Atomic layer deposition (ALD) of Ni is a promising method for preparing a carbon nanotube (CNT)-based Ni nanocomposite•CNT–Ni nanocomposite modified GCE is an excellent electrocatalyst for glucose oxidation.</description><subject>Atomic layer deposition</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Carbon nanotube nanocomposite</subject><subject>Carbon tetrabromide precursor</subject><subject>Chemical vapor deposition</subject><subject>Deposition</subject><subject>Enzyme-free glucose biosensor</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - chemistry</subject><subject>Glucose - isolation &amp; purification</subject><subject>Humans</subject><subject>Methods. Procedures. Technologies</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanostructure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nickel</subject><subject>Nickel - chemistry</subject><subject>Nickel nanoparticle electrocatalyst</subject><subject>Photoelectron Spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Various methods and equipments</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuKFDEUhoMoTjv6Ai4kG8FNtblULgVuZPAGAy7UdUilT7rTViVtUiW0q9nME_iGPonpi7pTVwnJ9_8czofQY0qWlFD5fLvsQypLRmi7JGpJRHcHLahWvGkZF3fRgnRCNkJKfoEelLIlhCjakfvogglKORF0gW4_7OO0gRIKTh47m_sUcbQxTXMPP26-x-A-w3B8cWncpRImKHguIa6xndIYHB7sHjJewfEz1LhPGW_CetPsINf7aKMDHFNsIH7bj3aqmfUwu1QAF4iHqofonrdDgUfn8xJ9ev3q49Xb5vr9m3dXL68b1wo2NVIR3ba6Uz21XIC2rqNaU8WYb4m0rifceyu10syLVmsuZWtZT2uYsM73_BI9O_XucvoyQ5nMGIqDYbAR0lwMlYK2VKmu-w-UC8KZZOrfqBCdpFooVlF2Ql1OpWTwZpfDaPPeUGIOUs3WHKSag1RDlKlSa-jJuX_uR1j9jvyyWIGnZ8AWZwef68ZD-cPVTVB1LHpx4qDu-GuAbIoLUO2sQgY3mVUKf5vjJ8WPwjc</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Choi, Taejin</creator><creator>Kim, Soo Hyeon</creator><creator>Lee, Chang Wan</creator><creator>Kim, Hangil</creator><creator>Choi, Sang-Kyung</creator><creator>Kim, Soo-Hyun</creator><creator>Kim, Eunkyoung</creator><creator>Park, Jusang</creator><creator>Kim, Hyungjun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20150115</creationdate><title>Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing</title><author>Choi, Taejin ; Kim, Soo Hyeon ; Lee, Chang Wan ; Kim, Hangil ; Choi, Sang-Kyung ; Kim, Soo-Hyun ; Kim, Eunkyoung ; Park, Jusang ; Kim, Hyungjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-670844897b1a35e8ac91881722f406acb03ffa68782f54883664a2b1452029fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic layer deposition</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Carbon nanotube nanocomposite</topic><topic>Carbon tetrabromide precursor</topic><topic>Chemical vapor deposition</topic><topic>Deposition</topic><topic>Enzyme-free glucose biosensor</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - chemistry</topic><topic>Glucose - isolation &amp; purification</topic><topic>Humans</topic><topic>Methods. Procedures. Technologies</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanostructure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nickel</topic><topic>Nickel - chemistry</topic><topic>Nickel nanoparticle electrocatalyst</topic><topic>Photoelectron Spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Taejin</creatorcontrib><creatorcontrib>Kim, Soo Hyeon</creatorcontrib><creatorcontrib>Lee, Chang Wan</creatorcontrib><creatorcontrib>Kim, Hangil</creatorcontrib><creatorcontrib>Choi, Sang-Kyung</creatorcontrib><creatorcontrib>Kim, Soo-Hyun</creatorcontrib><creatorcontrib>Kim, Eunkyoung</creatorcontrib><creatorcontrib>Park, Jusang</creatorcontrib><creatorcontrib>Kim, Hyungjun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Taejin</au><au>Kim, Soo Hyeon</au><au>Lee, Chang Wan</au><au>Kim, Hangil</au><au>Choi, Sang-Kyung</au><au>Kim, Soo-Hyun</au><au>Kim, Eunkyoung</au><au>Park, Jusang</au><au>Kim, Hyungjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2015-01-15</date><risdate>2015</risdate><volume>63</volume><spage>325</spage><epage>330</epage><pages>325-330</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>A useful strategy has been developed to fabricate carbon-nanotube–nickel (CNT–Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT–Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT–Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5μM–2mM, short response time (3s), a low detection limit (2μM), high sensitivity (1384.1μAmM−1cm−2), and good selectivity and repeatability. •Carbon tetrabromide precursor and Au catalyst can be used for chemical vapor deposition of the CNT which is a good supporting material for ALD of Ni.•Atomic layer deposition (ALD) of Ni is a promising method for preparing a carbon nanotube (CNT)-based Ni nanocomposite•CNT–Ni nanocomposite modified GCE is an excellent electrocatalyst for glucose oxidation.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>25113051</pmid><doi>10.1016/j.bios.2014.07.059</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2015-01, Vol.63, p.325-330
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1651417799
source MEDLINE; Elsevier ScienceDirect Journals
subjects Atomic layer deposition
Biological and medical sciences
Biosensing Techniques - methods
Biosensors
Biotechnology
Carbon nanotube nanocomposite
Carbon tetrabromide precursor
Chemical vapor deposition
Deposition
Enzyme-free glucose biosensor
Fundamental and applied biological sciences. Psychology
Glucose
Glucose - chemistry
Glucose - isolation & purification
Humans
Methods. Procedures. Technologies
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Nanocomposites
Nanocomposites - chemistry
Nanostructure
Nanotubes, Carbon - chemistry
Nickel
Nickel - chemistry
Nickel nanoparticle electrocatalyst
Photoelectron Spectroscopy
Scanning electron microscopy
Various methods and equipments
title Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20carbon%20nanotube%E2%80%93nickel%20nanocomposites%20using%20atomic%20layer%20deposition%20for%20high-performance%20non-enzymatic%20glucose%20sensing&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Choi,%20Taejin&rft.date=2015-01-15&rft.volume=63&rft.spage=325&rft.epage=330&rft.pages=325-330&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2014.07.059&rft_dat=%3Cproquest_cross%3E1559618572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559618572&rft_id=info:pmid/25113051&rft_els_id=S0956566314005600&rfr_iscdi=true